Skip to main content
Log in

Texture image retrieval using DNST domain local neighborhood intensity pattern

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we proposed a new texture image retrieval method based on discrete non-separable shearlet transform (DNST) domain local neighborhood intensity pattern (LNIP), which can fully characterize the discriminative information among particular coefficient and its adjacent neighbors within a local window. Firstly, the original image is decomposed into different subbands of frequency and orientation responses by using discrete non-separable shearlet transform (DNST). Secondly, based on center symmetric-local binary pattern theory, the sign and magnitude patterns of DNST domain LNIP descriptor are constructed using novel computation rule. Meanwhile, a new binary bit-string encoding scheme is developed, which can overcome the information redundant and inaccurate problem of conventional encoding strategy in LNIP. Thirdly, the mean, standard deviation and entropy values of the DNST domain LNIP at different scales are calculated and fused into a vector as the image texture feature values, which effectively reduce the feature dimensions. And finally, image similarity measurement is accomplished by using closed-form solutions for the Kullback–Leibler divergences between the DNST domain LNIP based image texture features. Experimental results on some test images and comparison with well-known existing methods demonstrate the efficacy and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abdelmounaime S, Dong-Chen H (2013) New Brodatz-based image databases for grayscale color and multiband texture analysis [J]. ISRN Machine Vision, . Available online: http://multibandtexture.recherche.usherbrooke.ca/.

  2. Ahmadian A, Mostafa A, Abolhassani M D et al (2006) A texture classification method for diffused liver diseases using Gabor wavelets [C]//2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, : 1567–1570. Available online: http://vismod.media.mit.edu/pub/.

  3. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns [C]//European conference on computer vision. Springer, Berlin, Heidelberg,:469–481. Available online: http://www.uk.research.att.com/facedatabase.html, 2002.

  4. Ambika A, Ranjani JJ, Srisathya KB et al (2014) Content based image retrieval using ripplet transform and Kullback-Leibler distance [C]//2014 international conference on computer communication and informatics. IEEE:1–6

  5. Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2018) Local neighborhood intensity pattern–a new texture feature descriptor for image retrieval [J]. Expert Syst Appl 113:100–115

  6. Celik T, Tjahjadi T (2009) Multiscale texture classification using dual-tree complex wavelet transform [J]. Patt Recogn Let. 30(3): 331–339. Available online: http://www.wavelab.at/sources/STex/.

  7. Chakraborti T, McCane B, Mills S, Pal U (2018) LOOP descriptor: local optimal-oriented pattern [J]. IEEE Signal Process Lett 25(5):635–639

  8. Chakraborty S, Singh SK, Chakraborty P (2016) Local gradient hexa pattern: a descriptor for face recognition and retrieval [J]. IEEE Trans Circ Syst Video Technol 28(1):171–180

    Article  Google Scholar 

  9. Chakraborty S, Singh SK, Chakraborty P (2017) Local directional gradient pattern: a local descriptor for face recognition [J]. Multimed Tools Appl 76(1):1201–1216

    Article  Google Scholar 

  10. Chakraborty S, Singh SK, Chakraborty P (2018) Centre symmetric quadruple pattern: a novel descriptor for facial image recognition and retrieval [J]. Pattern Recogn Lett 115:50–58

    Article  Google Scholar 

  11. Dubey SR, Singh SK, Singh RK (2015) Local diagonal Extrema pattern: a new and efficient feature descriptor for CT image retrieval [J]. IEEE Signal Process Lett 22(9):1215–1219

    Article  Google Scholar 

  12. Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval [J]. IEEE Trans Image Process 25(9):4018–4032

    Article  MathSciNet  Google Scholar 

  13. Fadaei S, Amirfattahi R, Ahmadzadeh MR (2017) Local derivative radial patterns: a new texture descriptor for content-based image retrieval [J]. Signal Process 137:274–286

    Article  Google Scholar 

  14. Fan H, Cosman PC, Hou Y, Hou Y, Li B (2018) High-speed railway fastener detection based on a line local binary pattern [J]. IEEE Signal Process Lett 25(6):788–792

  15. Fan KC, Hung TY (2014) A novel local pattern descriptor—local vector pattern in high-order derivative space for face recognition [J]. IEEE Trans Image Process 23(7):2877–2891

    Article  MathSciNet  Google Scholar 

  16. Froba B, Ernst A (2004) Face detection with the modified census transform [C]//sixth IEEE international conference on automatic face and gesture recognition, 2004. Proceedings IEEE:91–96

  17. Ghose S, Das A, Bhunia AK, Roy PP (2020) Fractional local neighborhood intensity pattern for image retrieval using genetic algorithm [J]. Multimed Tools Appl 79:18527–18552

  18. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification [J]. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  19. Hafiane A, Seetharaman G, Zavidovique B (2007) Median binary pattern for textures classification [C]//international conference image analysis and recognition. Springer, Berlin, Heidelberg, pp 387–398

    Google Scholar 

  20. Haralick RM (1979) Statistical and structural approaches to texture [J]. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  21. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns [J]. Pattern Recogn 42(3):425–436

    Article  Google Scholar 

  22. Jain AK, Farrokhnia F (1991) Unsupervised texture segmentation using Gabor filters [J]. Pattern Recogn 24(12):1167–1186

    Article  Google Scholar 

  23. Kaur S, Banga DVK (2013) Content based image retrieval: survey and comparison between RGB and HSV model. Int J Eng Trends Technol 4(4):575–579

    Google Scholar 

  24. Kou Q, Cheng D, Zhuang H, Gao R (2018) Cross-complementary local binary pattern for robust texture classification [J]. IEEE Signal Process Lett 26(1):129–133

  25. Lan R, Zhou Y, Tang YY (2015) Quaternionic local ranking binary pattern: a local descriptor of color images [J]. IEEE Trans Image Process 25(2):566–579

    Article  MathSciNet  Google Scholar 

  26. Leng L, Zhang J (2013) PalmHash code vs. palmphasor code [J]. Neurocomputing 108:1–12

    Article  Google Scholar 

  27. Leng L, Li M, Leng L, Teoh ABJ (2013) Conjugate 2DPalmHash code for secure palm-print-vein verification [C]. 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18

  28. Leng L, Li M, Kim C, Bi X (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition [J]. Multimed Tools Appl 76:333–354

    Article  Google Scholar 

  29. Li C, Li J, Fu B (2013) Magnitude-phase of quaternion wavelet transform for texture representation using multilevel copula [J]. IEEE Signal Process Lett 20(8):799–802

    Article  Google Scholar 

  30. Li C, Huang Y, Zhu L (2017) Color texture image retrieval based on Gaussian copula models of Gabor wavelets [J]. Pattern Recogn 64:118–129

    Article  Google Scholar 

  31. Li X, Yang J, Ma J (2021) Recent developments of content-based image retrieval (CBIR) [J]. Neurocomputing 452:675–689. https://doi.org/10.1016/j.neucom.2020.07.139

    Article  Google Scholar 

  32. Lim WQ (2013) Nonseparable shearlet transform [J]. IEEE Trans Image Process 22(5):2056–2065

    Article  MathSciNet  Google Scholar 

  33. Liu G-H, Image rank machine based on visual attention mechanism. Available online: http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx.

  34. Lu CS, Chung PC, Chen CF (1997) Unsupervised texture segmentation via wavelet transform [J]. Pattern Recogn 30(5):729–742

    Article  Google Scholar 

  35. Miao C, Zhao Y (2014) Rotation-invariant image retrieval using hidden Markov tree for remote sensing data [C]//multispectral, hyperspectral, and Ultraspectral remote sensing technology. Techn Appl V Int Soc Optics Photon 9263:92631W

    Google Scholar 

  36. Mosleh A, Zargari F, Azizi R (2009) Texture image retrieval using contourlet transform [C]//2009 international symposium on signals, circuits and systems. IEEE:1–4

  37. Murala S, Wu QMJ (2013) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval [J]. IEEE J Biomed Health Inform 18(3):929–938

    Article  Google Scholar 

  38. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval [J]. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  39. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local Extrema patterns: a new descriptor for content based image retrieval [J]. Int J Multimedia Inform Retrieval 1(3):191–203

    Article  Google Scholar 

  40. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions [J]. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  41. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Trans Patt Anal Mach Intell 7:971–987

    Article  Google Scholar 

  42. Pan Z, Li Z, Fan H, … Wu X (2017) Feature based local binary pattern for rotation invariant texture classification [J]. Expert Syst Appl 88:238–248

    Article  Google Scholar 

  43. Pan Z, Li Z, Wu X (2018) A new encoding scheme of lbp based on maximum run length of state “1” for texture classification [J]. Multimed Tools Appl 77(20):26469–26484

    Article  Google Scholar 

  44. Pietikäinen M, Ojala T, Xu Z (2000) Rotation-invariant texture classification using feature distributions [J]. Pattern Recogn 33(1):43–52

    Article  Google Scholar 

  45. Qian X, Hua XS, Chen P, Ke L (2011) PLBP: an effective local binary patterns texture descriptor with pyramid representation [J]. Pattern Recogn 44(10–11):2502–2515

  46. Rivera AR, Castillo JR, Chae OO (2012) Local directional number pattern for face analysis: face and expression recognition [J]. IEEE Trans Image Process 22(5):1740–1752

    Article  MathSciNet  Google Scholar 

  47. Ryu B, Rivera AR, Kim J, Chae O (2017) Local directional ternary pattern for facial expression recognition [J]. IEEE Trans Image Process 26(12):6006–6018

  48. Singh C, Walia E, Kaur KP (2018) Color texture description with novel local binary patterns for effective image retrieval [J]. Pattern Recogn 76:50–68

    Article  Google Scholar 

  49. Song T, Xin L, Gao C, Zhang G, Zhang T (2018) Grayscale-inversion and rotation invariant texture description using sorted local gradient pattern [J]. IEEE Signal Process Lett 25(5):625–629

  50. Su SZ, Chen SY, Li SZ, Duh DJ (2010) Structured local binary Haar pattern for pixel-based graphics retrieval [J]. Electron Lett 46(14):996–998

  51. Subrahmanyam M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking [J]. Signal Process 92(6):1467–1479

    Article  Google Scholar 

  52. Tan X, Triggs W (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions [J]. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  53. Urban and natural scene categories, computational visual cognition laboratory, massachusetts institute of technology. Available online: http://cvcl.mit.edu/database.htm.

  54. Verma M, Raman B (2016) Local tri-directional patterns: a new texture feature descriptor for image retrieval [J]. Digital Signal Process 51:62–72

    Article  MathSciNet  Google Scholar 

  55. Verma M, Raman B (2018) Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval [J]. Multimed Tools Appl 77(10):11843–11866

    Article  Google Scholar 

  56. Wang Q, Li B, Chen X, Hou Y (2017) Random sampling local binary pattern encoding based on Gaussian distribution [J]. IEEE Signal Process Lett 24(9):1358–1362

  57. Xia Y, Wan S, Yue L. Local spatial binary pattern: A new feature descriptor for content-based image retrieval [C]//Fifth International Conference on Graphic and Image Processing (ICGIP 2013). Int Soc Optics Photon, 2014, 9069: 90691K.

  58. Xia Z, Yuan C, Lv R, et al. A novel weber local binary descriptor for fingerprint liveness detection [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.

  59. Xiao B, Wang K, Bi X, Li W, Han J (2019) 2D-LBP: an enhanced local binary feature for texture image classification [J]. IEEE Trans Circuits Syst Video Technol 29:2796–2808

  60. Yang P, Zhang F, Yang G (2018) Fusing DTCWT and LBP based features for rotation, illumination and scale invariant texture classification [J]. IEEE Access 6:13336–13349

    Article  Google Scholar 

  61. Zhao Y, Huang DS, Jia W (2012) Completed local binary count for rotation invariant texture classification [J]. IEEE Trans Image Process 21(10):4492–4497

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the National Natural Science Foundation of China (Nos. 61472171 & 61701212), Scientific Research Project of Liaoning Provincial Education Department (No. LJKZ0985), and Natural Science Foundation of Liaoning Province (No. 2019-ZD-0468).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Wang or Hongying Yang.

Ethics declarations

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, H., Gao, S. et al. Texture image retrieval using DNST domain local neighborhood intensity pattern. Multimed Tools Appl 81, 29525–29554 (2022). https://doi.org/10.1007/s11042-022-12819-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12819-x

Keywords

Navigation