Skip to main content
Log in

Analysis of brain signal processing and real-time EEG signal enhancement

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Cerebrum signals can be acquired and broken down with various techniques, as represented in the paper. Electroencephalogram (EEG) signals are damaged by various conventional i.e. signals related to muscle action, eye development, and body movement, which have non-cerebral inception. The outcomes of such traditions are superior to that of the cerebrum’s electrical movement, so they cover the cortical signs of interest and bring a one-sided investigation. A few visually impaired source partition techniques have been created to expel ancient rarities from the EEG accounts. The iterative procedure for estimating detachment inside multichannel chronicles is computationally immovable in all cases. The curiosity segments require a tedious disconnected procedure except physically. The proposed work gives a curio expulsion calculation that depends on the authoritative connection examination (CCA) and Gaussian Mix-Model (GMM) to expand the nature of signs of EEG. In particular, EEG signs can be investigated utilizing various techniques, proposing a mix of strategies ideal for simplicity of automated examination and conclusion of epileptic seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agarwal R, Gotman J, Flanagan D, Rosenblatt B (1998) Automatic EEG analysis during long-term monitoring in the ICU. Electroencephalogr Clin Neurophysiol 107(1):44–58

    Article  Google Scholar 

  2. Anaya-Isaza A, Mera-Jiménez L, Zequera-Diaz M (2021) An overview of deep learning in medical imaging[J]. Informatics in Medicine Unlocked 26:100723

    Article  Google Scholar 

  3. Barbati G, Porcaro C, Zappasodi F, Rossini PM, Tecchio F (2004) Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin Neurophysiol 115(5):1220–1232

    Article  Google Scholar 

  4. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    Article  Google Scholar 

  5. Baumgartner C, Pataraia E (2006) Revisiting the role of magnetoencephalography in epilepsy. Curr Opin Neurol 19(2):181–186

    Article  Google Scholar 

  6. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  Google Scholar 

  7. Berger H (1929) Ueber das elektroenkephalogramm des menschen. Arch Psychiat Nervenkr 87:527–570

    Article  Google Scholar 

  8. Berman J, Diffusion MR (2009) Tractography as a tool for surgical planning. Magn Reson Imaging Clin N Am 17(2):205–214

    Article  Google Scholar 

  9. Bulea TC, Prasad S, Kilicarslan A, Contreras-Vidal JL (2014) Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Front Neurosci 8:376

    Article  Google Scholar 

  10. Calinon S, Guenter F, Billard A (2007) On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 37(2):286–298

    Article  Google Scholar 

  11. Chandrakar R, Raja R, Miri R (2021) Animal detection based on deep convolutional neural networks with genetic segmentation. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-11290-4.

  12. Chandrakar R, Raja R, Miri R, Kushwaha A (2022) Enhanced the moving object detection and object tracking for traffic surveillance using RBF-FDLNN and CBF algorithm. Expert Systems With Applications, 116306, ISSN: 0957–4174. https://doi.org/10.1016/j.eswa.2021.116306.

  13. Cvetkovic D, Ubeyli ED, Cosic (2008) Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study. Digital Signal Processing 18(5):861–874

    Article  Google Scholar 

  14. Da Silva FHL (2004) Functional localization of brain sources using EEG and/or MEG data: volume conductor and source models. Magn Reson Imaging 22(10):1533–1538

    Article  Google Scholar 

  15. De Clercq W, Vergult A, Vanrumste B, Van Paesschen W, Van Huffel S (2006) Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans Biomed Eng 53(12):2583–2587

    Article  Google Scholar 

  16. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including indepen- dent component analysis. J Neurosci Methods 134(1):9–21

    Article  Google Scholar 

  17. Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and inde- pendent component analysis. NeuroImage 34(4):1443–1449

    Article  Google Scholar 

  18. Ding L, Worrell GA, Lagerlund TD, He B (2007a) Ictal source analysis: localization and imaging of causal interactions in humans. Neuroimage. 34(2):575–586

    Article  Google Scholar 

  19. Ding L, Wilke C, Xu B, Xu X, van Drongelen W, Kohrman M, He B (2007b) EEG source imaging: correlating source locations and extents with electrocorticography and surgical resections in epilepsy patients. J Clin Neurophysiol 24(2):130–136

    Article  Google Scholar 

  20. Dong S, Wang P, Abbas K (2021) A survey on deep learning and its applications[J]. Computer Science Review 40:100379

    Article  MathSciNet  MATH  Google Scholar 

  21. Ebersole JS, Hawes S, Scherg M (1995) Intracranial EEG Validation of spike propagation predicted by dipole models. Electroencephalogr Clin Neurophysiol 95(2):18P–19P

    Article  Google Scholar 

  22. Escudero J, Hornero R, Abasolo D, Fernandez A, Lopez-Coronado M (2007) Artifact removal in magnetoencephalo- gram background activity with independent component analysis. IEEE Trans Biomed Eng 54(11):1965–1973

    Article  Google Scholar 

  23. Esteller R, Vachtsevanos G, Echauz J, Litt B (2001) A compar- ison of waveform fractal dimension algorithms. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(2):177–183

    Article  Google Scholar 

  24. Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  25. Friston KJ (2009) Modalities, modes, and models in functional neuroimaging. Science 326(no. 5951):399

  26. Friston KJ, Frith CD, Fiddle PF, Frackowiak RSJ (1993) Functional connectivity: the principal- component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

  27. Fritzsche KH, Laun FB, Meinzer HP, Stieltjes B (2010) Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging? Neuroimage. 51(1):242–251

    Article  Google Scholar 

  28. Fukunaga K (1990) Introduction to statistical pattern recognition, 592, Elsevier Science Publishing Co Inc., San Diego

  29. Gao J, Zheng C, Wang P (2010) Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis. Clinical EEG and Neuroscience 41(1):53–59

    Article  Google Scholar 

  30. Gomez-Herrero G, Clercq W, Anwar H et al. (2006) Automatic removal of ocular artifacts in the EEG without an EOG reference channel, in Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006, Rejkjavik, Iceland.

  31. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 37(3):424–438

    Article  MATH  Google Scholar 

  32. Hageman NS, Toga AW, Narr KL, Shattuck DW (2009) A diffusion tensor imaging tractography algorithm based on Navier–stokes fluid mechanics. IEEE Trans Med Imaging 28(3):348–360

    Article  Google Scholar 

  33. Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Finland: Helsinki University of Technology Helsinki.

  34. Hämäläinen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36(2):165–171

    Article  Google Scholar 

  35. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography— theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497

    Article  Google Scholar 

  36. Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton, NJ

    Book  MATH  Google Scholar 

  37. He B (2005) Neural engineering. Kluwer Academic/Plenum, Norwell, MA

    Book  Google Scholar 

  38. He B, Liu Z (2008) Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE Rev Biomed Eng 1:23–40

    Article  Google Scholar 

  39. He B, Musha T (1992) Equivalent dipole estimation of spontaneous EEG alpha activity: two-moving dipole approach. Med Biol Eng Comput 30(3):324–332

    Article  Google Scholar 

  40. He B, Musha T, Okamoto Y, Homma S, Nakajima Y, Sato T (1987) Electric dipole tracing in the brain using the boundary element method and its accuracy. IEEE Trans Biomed Eng 34(6):406–414

    Article  Google Scholar 

  41. Hsu W-Y, Lin CH, Hsu HJ, Chen PH, Chen IR (2012) Wavelet-based envelope features with automatic EOG artifact removal: application to single-trial EEG data. Expert Syst Appl 39(3):2743–2749

    Article  Google Scholar 

  42. Jasper H, Proctor LD, Reticular formation of the brain, 1958.

    Google Scholar 

  43. Joyce CA, Gorodnitsky IF, Kutas M (2004) Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2):313–325

    Article  Google Scholar 

  44. Jung T-P, Humphries C, Lee TW et al. (1998) Extended ICA removes artifacts from electroencephalographic recordings, in Proceedings of the 1997 conference on Advances in neural information processing systems 10, pp. 894–900, MIT Press, Denver

  45. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000) Removing electro- encephalographic artifacts by blind source separation. Psychophysiology 37(2):163–178

    Article  Google Scholar 

  46. Jung T-P, Makeig S, McKeown MJ, Bell AJ, Lee TW, Sejnowski TJ (2001) Imaging brain dynamics using independent component analysis. Proc IEEE 89(7):1107–1122

    Article  Google Scholar 

  47. Kamousi B, Liu Z, He B (2005) Classification of motor imagery tasks for brain-computer interface applications through two equivalent dipoles analysis. IEEE trans Neural Syst Rehabil Eng 13(2):166–171

    Article  Google Scholar 

  48. Kavanagk RN, Darcey TM, Lehmann D, Fender DH (1978) Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans Biomed Eng 25(5):421–429

    Article  Google Scholar 

  49. Khare SK, Bajaj V (2020) A facile and flexible motor imagery classification using electroencephalogram signals. Comput Methods Prog Biomed 197:105722. https://doi.org/10.1016/j.cmpb.2020.105722

    Article  Google Scholar 

  50. Khare SK, Bajaj V, Acharya UR (2021a) Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybernetics and Biomedical Engineering 41(2):679–689. https://doi.org/10.1016/j.bbe.2021.04.008

    Article  Google Scholar 

  51. Khare SK, Bajaj V, Acharya UR (2021b) SPWVD-CNN for Automated Detection of Schizophrenia Patients Using EEG Signals. in IEEE Transactions on Instrumentation and Measurement, 70, 1–9, Art no 2507409, https://doi.org/10.1109/TIM.2021.3070608.

  52. Kordylewski H, Graupe D, Liu K (2001) A novel large-memory neural network as an aid in medical diagnosis applications. IEEE Trans Inf Technol Biomed 5(3):202–209

    Article  Google Scholar 

  53. Kothe CAE, Jung TP (2016) Artifact removal techniques with signal reconstruction, Google Patents

  54. Kousarrizi MRN, Ghanbari AA, Teshnehlab M, Ali-yari M, Gharaviri A (2009) Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain-computer interfaces,” in Proceedings of the International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing (IJCBS ‘09), pp. 352–355

  55. Lawhern V, Slayback D, Wu D, Lance BJ (2015) Efficient labeling of EEG signal artifacts using active learning, in 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon, China

  56. Lee L, Harrison LM, Mechelli A (2003) A report of the functional connectivity workshop, Dusseldorf 2002. Neuroimage. 19(2):457–465

    Article  Google Scholar 

  57. Liao L-d, Lin C-T, McDowell K et al. (2012) Biosensor technologies for augmented brain-computer interfaces in the next decades. Proceedings of the IEEE, vol. 100, Special Centennial Issue, 1553–1566.

  58. Lichtman JW, Livet J, Sanes JR (2008) A technicolor approach to the connectome. Nat Rev Neurosci 9(6):417–422

    Article  Google Scholar 

  59. Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci U S A 94(20):10979–10984

    Article  Google Scholar 

  60. Mangun GR, Hillyard SA (1991) Modulations of sensory- evoked brain potentials indicate changes in perceptual pro- cessing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17(4):1057–1074

    Article  Google Scholar 

  61. Martín-Clemente R, Hornillo-Mellado S, Camargo-Olivares JL (2011) Independent component analysis: a low-complexity technique,” in New Challenges on Bioinspired Applications: 4th International Work-Conference on the Interplay between Natural and Artificial Computation, IWINAC 2011, J. M. Ferrández, J. R. Álvarez Sánchez, F. Paz and F. J. Toledo, Eds., pp. 324–332, Springer, Berlin, Heidelberg

  62. Mayaud L, Congedo M, van Laghenhove A, Orlikowski D, Figère M, Azabou E, Cheliout-Heraut F (2013) A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer Interface (BCI) paradigm. Clin Neurophysiol 43(4):217–227

    Article  Google Scholar 

  63. Meyer-Lindenberg A (1996) The evolution of complexity in human brain development: an EEG study. Electroencephalogr Clin Neurophysiol 99(5):405–411

    Article  Google Scholar 

  64. Mognon A, Jovicich J, Bruzzone L, Buiatti M (2010) ADJUST an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48(2):229–240

    Article  Google Scholar 

  65. Mori S, Oishi K, Faria AV (2009) White matter atlases based on diffusion tensor imaging. Curr Opin Neurol 22(4):362–369

    Article  Google Scholar 

  66. Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE trans. Signal Process 47(2):332–340

    Google Scholar 

  67. Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from Spatio-temporal MEG data. IEEE Trans Biomed Eng 39(6):541–557

    Article  Google Scholar 

  68. Mullen T, Kothe C, Chietal YM (2013) Real-timemodelingand 3D visualization of source dynamics and connectivity using wearable EEG, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2184–2187, Osaka, Japan

  69. Pandey S, Miri R, Sinha GR, Raja R (2022) AFD Filter and E2n2 classifier for improving visualization of crop image and crop classification in remote sensing image, International Journal of Remote Sensing 43(1), https://doi.org/10.1080/01431161.2021.2000062

  70. Pierce JMS (2002) A disease once sacred. A history of the medical understanding of epilepsy. Brain. 125(2):441–442

    Article  Google Scholar 

  71. Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia. 49(2):201–218

    Article  Google Scholar 

  72. Romo Vázquez R, Vélez-Pérez H, Ranta R, Louis Dorr V, Maquin D, Maillard L (2012) Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomedical Signal Processing and Control 7(4):389–400

    Article  Google Scholar 

  73. Santhos Kumar A, Kumar A, Bajaj V, Singh GK (2021) Class label altering fuzzy min-max network and its application to histopathology image database. Expert Syst Appl 176:114880. https://doi.org/10.1016/j.eswa.2021.114880

    Article  Google Scholar 

  74. Shao S-Y, Shen K-Q, Ong CJ, Wilder-Smith E, Li X-P (2009) Automatic EEG artifact removal: a weighted support vector machine approach with error correction. IEEE Trans Biomed Eng 56(2):336–344

    Article  Google Scholar 

  75. Sharma PC, Chaudhari NS (2020) A tree based novel approach for graph coloring problem using maximal independent set. Springer Journal of “Wireless Personal Communication” 110(3):1143–1155

    Article  Google Scholar 

  76. Subasi A (2007) EEGsignalclassificationusingwaveletfeatureextra- action and a mixture of the expert model. Expert Syst Appl 32(4):1084–1093

    Article  Google Scholar 

  77. Subasi A, Ercelebi E (2005) Classification of EEG signals using neural network and logistic regression. Comput Methods Prog Biomed 78(2):87–99

    Article  MATH  Google Scholar 

  78. Taran S, Sharma PC, Bajaj V (2020) Automatic sleep stages classification using optimize flexible analytic wavelet transform. Elsevier journal of “knowledge-based systems” 192:1–8

    Google Scholar 

  79. Tatum WO, Dworetzky BA, Schomer DL (2011) Artifact and recording concepts in EEG. J Clin Neurophysiol 28(3):252–263

    Article  Google Scholar 

  80. Tiwari L, Raja R, Awasthi V, Miri R, Sinha GR, Alkinani MH, Polat K (2021) Detection of lung nodule and cancer using novel Mask-3 FCM and TWEDLNN algorithms, Measurement, 172, 108882, https://doi.org/10.1016/j.measurement.2020.108882.

  81. Ubeyli ED (2009) Statistics over features: EEG signals analysis. Comput Biol Med 39(8):733–741

    Article  Google Scholar 

  82. Vergult A, de Clercq W, Palmini A, Vanrumste B, Dupont P, van Huffel S, van Paesschen W (2007) Improving the interpretation of ictal scalp EEG: BSS–CCA algorithm for mus- cle artifact removal. Epilepsia 48(5):950–958

    Article  Google Scholar 

  83. Winkler I, Haufe S, Tangermann M (2011) Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav Brain Funct 7(1):1–15

    Article  Google Scholar 

  84. Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage 30(3):813–826

  85. Xu XL, Xu B, He B (2004) An alternative subspace approach to EEG dipole source localization. Phys Med Biol 49(2):327

    Article  Google Scholar 

  86. Yan Y, Nunez PL, Hart RT (1991) A finite-element model of the human head: scalp potentials due to dipole sources. Med Biol Eng Comput 29(5):475–481

    Article  Google Scholar 

  87. Zhang Y, Ding L, van Drongelen W, Hecox K, Frim DM, He B (2006) A cortical potential imaging study from simultaneous extra-and intracranial electrical recordings through the finite element method. Neuroimage. 31(4):1513–1524

    Article  Google Scholar 

  88. Zhou W, Gotman J (2009) Automatic removal of eye movement artifacts from the EEG using ICA and the dipole model. Prog Nat Sci 19(9):1165–1170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Vishwakarma.

Ethics declarations

Conflicts of interest/competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P.C., Raja, R., Vishwakarma, S.K. et al. Analysis of brain signal processing and real-time EEG signal enhancement. Multimed Tools Appl 81, 41013–41033 (2022). https://doi.org/10.1007/s11042-022-12887-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12887-z

Keywords

Navigation