Skip to main content

Advertisement

Log in

Design of Deep Convolution Neural Networks for categorical signature classification of raw panchromatic satellite images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Remote Sensing categorical signature classification has gained significant implications on spatial resolution image analysis due to differences in the sensors’ spatial response and surface variations. As a consequence, the grey level co-occurrence of probability texture features for the classification task is crucial. Traditionally, deep learning-based Convolution Neural Network (CNN) classifiers for spectral/spatially scaled signatures (Hyperspectral or Multispectral images) extract deep features and accurately classify remote sensing scenes into appropriate labels/categories. While dealing with raw panchromatic images, the spatial with varied angular signatures will have untrained grey scale patterns, translational and rotational variations. It is still a bottleneck to label and classify data using pre-trained models from two separate sources based on its spatial structural characteristics. In this paper, a thirteen-layer deep CNN model is designed for categorical signature classification of the raw panchromatic satellite dataset. The design is carried out in three stages- Firstly, the method extracts the global content and meanings of remote sensing images at the scene level. Then, it cross compares with training and testing of identified complex remote sensing signatures in raw inter dataset images with large inter and intra-class variations. Finally, the validation of the 70:30 training-testing set is done to classify a batch of images into the respective labeled signatures (Land and sea) with an accuracy of 88.9%. The modified versions of five state-of-the-art pre-trained classifiers are tested to check the efficacy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets procured from National Remote Sensing Center (NRSC), Indian Space Research Organization (ISRO), India, for educational purposes. The authors would like to thank the NRSC organization for providing the datasets. Since the data is not available for commercial use, the images used for research purposes are shown in the manuscript.

Code availability

The software tool is readily available in MATLAB R19 B and higher versions. The design is done, as mentioned in Section-2. There is no code for this paper.

Notes

  1. https://www.mathworks.com/help/deeplearning/ref/alexnet.html

References

  1. Bhosle K, Musande V (2019) Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images. J Indian Soc Remote Sens 47:1949–1958. https://doi.org/10.1007/s12524-019-01041-2

    Article  Google Scholar 

  2. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  3. Chen Y, Wang Q, Wang Y, Duan S, Xu M, Li Z (2016) A spectral signature shape-based algorithm for Landsat image classification. ISPRS Int J Geo Inf 5:154

    Article  Google Scholar 

  4. Chen G, Zhang X, Tan X, Cheng Y, Dai F, Zhu K, Gong Y, Wang Q (2018) Training small networks for the scene classification of remote sensing images via knowledge distillation. Remote Sens 10(5):719

    Article  Google Scholar 

  5. Chen S, Jin M, Ding J (2020) Hyperspectral remote sensing image classification based on dense residual three-dimensional convolutional neural network. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-09480-7

  6. Cheng G, Han J, Lu X (2017) Remote sensing image scene classification: Benchmark and state of the art. Proc IEEE 105(10):1865–1883

    Article  Google Scholar 

  7. Cheng G, Yang C, Yao X, Guo L, Han J (2018) When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNN. IEEE Trans Geosci Remote Sens 56(5):2811–2821

    Article  Google Scholar 

  8. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) 1:886–893. https://doi.org/10.1109/CVPR.2005.177

  9. Ding L, Li H, Hu C, Zhang W, Wang S (2018) Alexnet feature extraction and multi-kernel learning for object oriented classification. ISPRS -Iint Arch Photogramm, Remote Sens Spatial Inform Sci XLII-3:277–281. https://doi.org/10.5194/isprs-archives-XLII-3-277-2018

    Article  Google Scholar 

  10. Djerriri K, Sofia A, Karoui MS, Adjoudf R (2018) Enhancing the Classification of Remote Sensing Data Using Multiband Compact Texture Unit Descriptor and Deep Convolutional Neural Network. IGARSS 2018–2018 IEEE international geoscience and remote sensing symposium, Valencia, pp 2479–2482. https://doi.org/10.1109/IGARSS.2018.8518501

    Book  Google Scholar 

  11. Dong C et al (2015) Image super-resolution using deep convolutional networks. TPAMI 38(2):295–307

    Article  Google Scholar 

  12. Gao H, Liu Z, van der Maaten L, Weinberger KQ (2018) Densely Connected Convolutional Networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243

  13. Garzonio R, Di Mauro B, Colombo R, Cogliati S (2017) Surface reflectance and Sun-induced fluorescence spectroscopy measurements using a small hyperspectral UAS. Remote Sens 9(5):472. https://doi.org/10.3390/rs9050472

    Article  Google Scholar 

  14. Ghazouani F, Farah IR, Basel Solaiman, (2018), Semantic Remote Sens Scenes Interpretation Change Interpretation, in Ontology in Information Science. https://doi.org/10.5772/intechopen.72730

  15. Gu Y, Wang Y, Li Y (2019) A survey on deep learning-driven remote sensing image scene understanding: scene classification, scene retrieval, and scene-guided object detection. Appl Sci 9:2110

    Article  Google Scholar 

  16. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybernet 6:610–621

    Article  Google Scholar 

  17. He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

  18. Hua Y, Mou L, Lin J, Heidler K, Zhu XX (2021) Aerial scene understanding in the wild: Multi-scene recognition via prototype-based memory networks, ISPRS Journal of Photogrammetry and Remote Sensing 177:89–102. https://doi.org/10.1016/j.isprsjprs.2021.04.006

  19. Hung S-C, Wu H-C, Tseng M-H (2020) Remote Sensing Scene Classification and Explanation Using RSSCNet and LIME. Appl Sci 10:6151. https://doi.org/10.3390/app10186151

    Article  Google Scholar 

  20. Jain AK, Ratha NK, Lakshmanan S (1997) Object detection using Gabor filters. Pattern Recogn 30(2):295–309

    Article  Google Scholar 

  21. Jegou H, Perronnin F, Douze M, Sanchez J, Perez P, Schmid C (2011) Aggregating local image descriptors into compact codes. IEEE Trans Pattern Anal Mach Intell 34(9):1704–1716

    Article  Google Scholar 

  22. Jiang J, Feng X, Liu F, Xu Y, and Huang H (2019) Multi-Spectral RGB-NIR Image Classification Using Double-Channel CNN, in IEEE Access 7:20607–20613. https://doi.org/10.1109/ACCESS.2019.2896128

  23. Kingma D, Ba J (2014) Adam: A Method for Stochastic Optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015)

  24. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks, in Proc Adv Neural Inf Process Syst pp. 1097–1105

  25. Lazebnik S, Schmid C, Ponce J (2006) Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), pp. 2169-2178. https://doi.org/10.1109/CVPR.2006.68

  26. Li Y, Zhang H, Xue X, Jiang Y, Shen Q (2018) Deep learning for remote sensing image classification: a survey. WIREs Data Min Knowl Discov 8:e1264. https://doi.org/10.1002/widm.1264

    Article  Google Scholar 

  27. Li T, Leng J, Kong L et al (2019) DCNR: deep cube CNN with random forest for hyperspectral image classification. Multimed Tools Appl 78:3411–3433. https://doi.org/10.1007/s11042-018-5986-5

    Article  Google Scholar 

  28. Li H, Dou X, Tao C, Wu Z, Chen J, Peng J, Deng M, Zhao L (2020) RSI-CB: a large-scale remote sensing image classification benchmark using crowdsourced data. Sensors. 20:1594. https://doi.org/10.3390/s20061594

    Article  Google Scholar 

  29. Lin L, Chen C, Xu T (2020) Spatial-spectral hyperspectral image classification based on information measurement and CNN EURASIP. J Wireless Commun Netw. https://doi.org/10.1186/s13638-020-01666-9

  30. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  31. Merugu S, Tiwari A, Sharma SK (2020) Spatial–spectral image classification with edge preserving method. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-020-01265-7

  32. Mhangara P, Mapurisa W, Mudau N (2020) Comparison of Image Fusion Techniques Using Satellite Pour l’Observation de la Terre (SPOT) 6 Satellite Imagery. Appl Sci 10:1881. https://doi.org/10.3390/app10051881

    Article  Google Scholar 

  33. Minetto R, Segundo MP, Sarkar S (2019) Hydra: An ensemble of convolutional neural networks for geospatial land classification. IEEE Trans Geosci Remote Sens 57(9):6530–6541

    Article  Google Scholar 

  34. Nagi J, et al (2011) Maxpooling convolutional neural networks for vision-based hand gesture recognition, 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 342–347. https://doi.org/10.1109/ICSIPA.2011.6144164

  35. Nair V, Hinton GE.(2010) Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814

  36. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  37. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  Google Scholar 

  38. Paul A, Bhoumik S, Chaki N (2020) SSNET: an improved deep hybrid network for hyperspectral image classification. Neural Comput Applic. https://doi.org/10.1007/s00521-020-05069-1

  39. Penatti OA, Nogueira K, Dos Santos JA (2015) Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 44-51. https://doi.org/10.1109/CVPRW.2015.7301382

  40. Perronnin F, Sanchez J, Mensink T (2010) Improving the Fisher Kernel for Large-Scale Image Classification. In: Daniilidis K., Maragos P., Paragios N. (eds) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science 6314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15561-1_11

  41. Rohith G, Kumar LS (2020) Remote sensing signature classification of agriculture detection using deep convolution network models. In: Bhattacharjee A, Borgohain S, Soni B, Verma G, Gao XZ (eds) Machine learning, image processing, network security, and data sciences. MIND 2020. Communications in Computer and Information Science, 1240th edn. Springer, Singapore. https://doi.org/10.1007/978-981-15-6315-7_28

    Chapter  Google Scholar 

  42. Rohith G, Kumar LS (2021) Super-resolution decision-making tool using deep convolution neural Networks for panchromatic images. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-10861-9

  43. Romero A, Gatta C, Camps-Valls G (2016) Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans Geosci Remote Sens 54(3):1349–1362. https://doi.org/10.1109/TGRS.2015.2478379

    Article  Google Scholar 

  44. Simonyan K, Zisserman A (2015) Very Deep Convolutional Networks for Large-Scale Image Recognition. The 3rd International Conference on Learning Representations (ICLR2015). https://arxiv.org/abs/1409.1556

  45. Song J, Gao S, Zhu Y, Ma C (2019) A survey of remote sensing image classification based on CNNs. Big Earth Data 3:1–23. https://doi.org/10.1080/20964471.2019.1657720

    Article  Google Scholar 

  46. Su T (2019) Superpixel-based principal component analysis for high-resolution remote sensing image classification. Multimed Tools Appl 78:34173–34191. https://doi.org/10.1007/s11042-019-08224-6

    Article  Google Scholar 

  47. Sumbul G, Charfuelan M, Demir B, and Markl V, (2019) “Bigearthnet: A large-scale benchmark archive for remote sensing image understanding,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp. 5901–5904

  48. Sun H, Li S, Zheng X, Lu X, (2020) Remote Sensing Scene Classification by Gated Bidirectional Network, in IEEE Transactions on Geoscience and Remote Sensing 58(1):82–96. https://doi.org/10.1109/TGRS.2019.2931801

  49. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  50. Unnikrishnan A, Sowmya V, Soman KP (2019) Deep learning architectures for land cover classification using red and near-infrared satellite images. Multimed Tools Appl 78:18379–18394. https://doi.org/10.1007/s11042-019-7179-2

    Article  Google Scholar 

  51. Wang G, Fan B, Xiang S, Pan C (2017) Aggregating rich hierarchical features for scene classification in remote sensing imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens 10(9):4104–4115

    Article  Google Scholar 

  52. Wang Q, Liu S, Chanussot J, Li X (2018) Scene classification with recurrent attention of vhr remote sensing images. IEEE Trans Geosci Remote Sens 57(2):1155–1167

    Article  Google Scholar 

  53. Wang Q, Liu S, Chanussot J, Li X (2019) Scene Classification With Recurrent Attention of VHR Remote Sensing Images, in IEEE Transactions on Geoscience and Remote Sensing 57(2):1155–1167. https://doi.org/10.1109/TGRS.2018.2864987

  54. Wang Q, Huang W, Zhang X, Li X (2021) Word–Sentence Framework for Remote Sensing Image Captioning," in IEEE Transactions on Geoscience and Remote Sensing 59(12):10532–10543. https://doi.org/10.1109/TGRS.2020.3044054

  55. Wang Q, Huang W, Xiong Z, Li X (2020) Looking Closer at the Scene: Multiscale Representation Learning for Remote Sensing Image Scene Classification, in IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3042276

  56. Xia G-S, Hu J, Hu F, Shi B, Bai X, Zhong Y, Zhang L, Lu X (2017) Aid: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans Geosci Remote Sens 55(7):3965–3981

    Article  Google Scholar 

  57. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification 270–279. https://doi.org/10.1145/1869790.1869829

  58. Yang S, Ramanan D (2015) Multi-scale Recognition with DAG-CNNs, 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1215–1223. https://doi.org/10.1109/ICCV.2015.144

  59. You Y, Cao J, Zhou W (2020) A Survey of Change Detection Methods Based on Remote Sensing Images for Multi-Source and Multi-Objective Scenarios. Remote Sens 12:2460. https://doi.org/10.3390/rs12152460

    Article  Google Scholar 

  60. Zhang F, Du B, Zhang L (2015) Scene classification via a gradient boosting random convolutional network framework. IEEE Trans Geosci Remote Sens 54(3):1793–1802

    Article  Google Scholar 

  61. Zhao B, Zhong Y, Xia G-S, Zhang L (2015) Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery. IEEE Trans Geosci Remote Sens 54(4):2108–2123

    Article  Google Scholar 

  62. Zhao L, Tang P, Huo L (2016) Feature significance-based multi-bag of-visual-words model for remote sensing image scene classification. J Appl Remote Sens 10(3):035004

    Article  Google Scholar 

  63. Zhao L, Zhang W, Tang P (2019) Analysis of the inter-dataset representation ability of deep features for high spatial resolution remote sensing image scene classification. Multimed Tools Appl 78:9667–9689. https://doi.org/10.1007/s11042-018-6548-6

    Article  Google Scholar 

  64. Zou Q, Ni L, Zhang T, Wang Q (2015) Deep learning-based feature selection for remote sensing scene classification. IEEE Geosci Remote Sens Lett 12(11):2321–2325

    Article  Google Scholar 

Download references

Acknowledgments

We thank National Remote Sensing Center, Indian Space Research Organisation, Hyderabad, India, for providing the IRS P5 Image data set for educational purposes. We also thank the National Institute of Technology Puducherry, Karaikal, India, for providing research facilities in this area.

Funding

The authors received no grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rohith.

Ethics declarations

Conflict of interest

G. Rohith declares that he has no conflict of interest. Lakshmi Sutha Kumar declares that she has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohith, G., Kumar, L.S. Design of Deep Convolution Neural Networks for categorical signature classification of raw panchromatic satellite images. Multimed Tools Appl 81, 28367–28404 (2022). https://doi.org/10.1007/s11042-022-12928-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12928-7

Keywords

Navigation