Skip to main content
Log in

Solving a generalized order improved diffusion equation of image denoising using a CeNN-based scheme

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel algorithm for image denoising using an improved nonlinear diffusion PDE model and a cellular neural network (CeNN) scheme. In particular, the images corrupted with multiplicative (speckle) noise have been considered. The proposed generalized-order nonlinear diffusion (GOND) model is solved through a suitable cellular neural network (CeNN) approach. The CeNN templates act like edge-preserving filters to reduce the multiplicative noise. The present study also gives a convergence analysis of the proposed CeNN based solution scheme. Further, the proposed scheme is numerically validated on synthetic, medical, and real SAR images. The obtained results demonstrate that the proposed algorithm provides a better way to deal with speckle noise and suppresses the staircase effects. To broaden the simulation results, the proposed method is applied to images corrupted with Gaussian, Rayleigh, and gamma noise. The proposed method for SSIM values interpret 0.2dB to 0.4dB better than state-of-the-art methods and comparative results in terms of PSNR in most test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://in.mathworks.com/Matlabcentral/fileexchange/36906-detail-preserving-anosotropic-diffusion-for-speckle-filtering-dpad

References

  1. Aja-Fernández S, Alberola-López C (2006) On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans Image Process 15(9):2694–2701

    Article  Google Scholar 

  2. Bai J, Feng X-C (2007) Fractional-order anisotropic diffusion for image denoising. IEEE Trans Image Process 16(10):2492–2502

    Article  MathSciNet  Google Scholar 

  3. Bezerra H G, Costa M A, Guagliumi G, Rollins A M, Simon D I (2009) Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications. JACC: Cardiovascul Intervent 2(11):1035–1046

    Google Scholar 

  4. Buades A, Coll (2005) A non-local algorithm for image denoising. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE Computer society conference on, vol 2. IEEE, pp 60–65

  5. Buades A, Coll B, Morel J-M (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530

    Article  MathSciNet  Google Scholar 

  6. Burger H C, Schuler C J, Harmeling S (2012) Image denoising: Can plain neural networks compete with bm3d?. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 2392–2399

  7. Catté F, Lions P-L, Morel J-M, Coll T (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 29(1):182–193

    Article  MathSciNet  Google Scholar 

  8. Chua LO, Wu CW (1992) The universe of stable cnn templates. Int J Circ Theory Appl Special Issue Cellular Neural Netw 20:497–517

    Article  Google Scholar 

  9. Coupé P, Hellier P, Kervrann C, Barillot C (2009) Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans Image Process 18 (10):2221–2229

    Article  MathSciNet  Google Scholar 

  10. Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672

    Article  MathSciNet  Google Scholar 

  11. Duarte-Salazar C A, Castro-Ospina A E, Becerra M A, Delgado-Trejos E (2020) Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: an overview. IEEE Access 8:15983–15999

    Article  Google Scholar 

  12. Frost V S, Stiles J A, Shanmugan K S, Holtzman J C (1982) A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell 4(2):157–166

    Article  Google Scholar 

  13. Fu X, Huang J, Ding X, Liao Y, Paisley J (2017) Clearing the skies: A deep network architecture for single-image rain removal. IEEE Trans Image Process 26(6):2944–2956

    Article  MathSciNet  Google Scholar 

  14. Gerig G, Kubler O, Kikinis R, Jolesz F A (1992) Nonlinear anisotropic filtering of mri data. IEEE Trans Med Imaging 11(2):221–232

    Article  Google Scholar 

  15. Goodman J W (1976) Some fundamental properties of speckle. JOSA 66(11):1145–1150

    Article  Google Scholar 

  16. Hu S (2013) External fractional-order gradient vector perona-malik diffusion for sinogram restoration of low-dosed x-ray computed tomography. Adv Math Phys 2013

  17. Huang J, Yang X (2013) Fast reduction of speckle noise in real ultrasound images. Sig Process 93(4):684–694

    Article  Google Scholar 

  18. Jain V, Seung S (2009) Natural image denoising with convolutional networks. In: Advances in neural information processing systems, pp 769–776

  19. Janev M, Pilipović S, Atanacković T, Obradović R, Ralević N (2011) Fully fractional anisotropic diffusion for image denoising. Math Comput Model 54(1-2):729–741

    Article  MathSciNet  Google Scholar 

  20. Jaybhay J, Shastri R (2015) A study of speckle noise reduction filters. Sig Image Process: Int J (SIPIJ) 6(3):71–80

    Google Scholar 

  21. Jin Z, Yang X (2011) A variational model to remove the multiplicative noise in ultrasound images. J Math Imaging Vis 39(1):62–74

    Article  MathSciNet  Google Scholar 

  22. Joseph J, Periyasamy R (2018) A polynomial model for the adaptive computation of threshold of gradient modulus in 2d anisotropic diffusion filter. Optik 157:841–853

    Article  Google Scholar 

  23. Krissian K, Vosburgh K, Kikinis R, Westin C-F (2004) Anisotropic diffusion of ultrasound constrained by speckle noise model. Laboratory of mathematics in imaging, Harvard Medical School,? Technical Report

  24. Lakra M, Kumar S (2020) A cnn-based computational algorithm for nonlinear image diffusion problem. Multimed Tools Appl 79(33):23887–23908

    Article  Google Scholar 

  25. Lee J-S (1980) Digital image enhancement and noise filtering by use of local statistics

  26. Li F, Ng M K, Shen C (2010) Multiplicative noise removal with spatially varying regularization parameters. SIAM J Imaging Sci 3(1):1–20

    Article  MathSciNet  Google Scholar 

  27. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings eighth IEEE international conference on computer vision. ICCV 2001, vol 2. IEEE, pp 416–423

  28. Menon S N, Reddy VB V, Yeshwanth A, Anoop BN, Rajan J (2020) A novel deep learning approach for the removal of speckle noise from optical coherence tomography images using gated convolution–deconvolution structure. In: Proceedings of 3rd international conference on computer vision and image processing. Springer, pp 115–126

  29. Nandal S, Kumar S (2018) Image denoising using fractional quaternion wavelet transform. In: Proceedings of 2nd international conference on computer vision & image processing. Springer, pp 301–313

  30. Paolo-Civalleri P, Gilli M (1999) On stability of cellular neural networks. J VLSI Signal Process Syst Signal Image Video Technol 23(2-3):429–435

    Article  Google Scholar 

  31. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  32. Rafsanjani H K, Sedaaghi M H, Saryazdi S (2017) An adaptive diffusion coefficient selection for image denoising. Digit Sig Process 64:71–82

    Article  MathSciNet  Google Scholar 

  33. Rahimizadeh N, Hasanzadeh RPR, Janabi-Sharifi F (2020) An optimized non-local lmmse approach for speckle noise reduction of medical ultrasound images. Multimed Tools Appl:1–23

  34. Ramos-Llordén G, Vegas-Sánchez-Ferrero G, Martin-Fernandez M, Alberola-López C, Aja-Fernández S (2014) Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Trans Image Process 24(1):345–358

    Article  MathSciNet  Google Scholar 

  35. Rosenfeld A, Kak AC (1982) Digital picture processing. Academic Press, New York

  36. Steidl G, Teuber T (2010) Removing multiplicative noise by douglas-rachford splitting methods. J Math Imaging Vis 36(2):168–184

    Article  MathSciNet  Google Scholar 

  37. Sudha S, Suresh GR, Sukanesh R (2009) Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. Int J Comput Theory Eng 1(1):7

    Article  Google Scholar 

  38. Wang F, Zhao X-L, Ng M K (2016) Multiplicative noise and blur removal by framelet decomposition and l_{1}-based l-curve method. IEEE Trans Image Process 25(9):4222–4232

    Article  MathSciNet  Google Scholar 

  39. Wang P, Zhang H, Patel V M (2017) Sar image despeckling using a convolutional neural network. IEEE Signal Process Lett 24(12):1763–1767

    Article  Google Scholar 

  40. Wang S, Huang T-Z, Zhao X-L, Mei J-J, Huang J (2018) Speckle noise removal in ultrasound images by first-and second-order total variation. Numer Algorithm 78(2):513–533

    Article  MathSciNet  Google Scholar 

  41. Weickert J (1998) Anisotropic diffusion in image processing, vol 1. Teubner Stuttgart

  42. Xu J, Jia Y, Shi Z, Pang K (2016) An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation. Signal Process 119:80–91

    Article  Google Scholar 

  43. Xu Y, Yuan J (2017) Anisotropic diffusion equation with a new diffusion coefficient for image denoising. Pattern Anal Appl 20(2):579–586

    Article  MathSciNet  Google Scholar 

  44. You Y-L, Kaveh M (2000) Fourth-order partial differential equations for noise removal. IEEE Trans Image Process 9(10):1723–1730

    Article  MathSciNet  Google Scholar 

  45. Yu J, Tan J, Wang Y (2010) Ultrasound speckle reduction by a susan-controlled anisotropic diffusion method. Pattern Recogn 43(9):3083–3092

    Article  Google Scholar 

  46. Yu Y, Acton S T (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11(11):1260–1270

    Article  MathSciNet  Google Scholar 

  47. Zhang J, Wei Z, Xiao L (2012) Adaptive fractional-order multi-scale method for image denoising. J Math Imaging Vis 43(1):39–49

    Article  MathSciNet  Google Scholar 

  48. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors Mahima is thankful the support of University Grant Commission (UGC) during her Ph.D through Ref. No. 412261.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahima Lakra.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakra, M., Kumar, S. Solving a generalized order improved diffusion equation of image denoising using a CeNN-based scheme. Multimed Tools Appl 81, 32393–32420 (2022). https://doi.org/10.1007/s11042-022-12998-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12998-7

Keywords

Navigation