Skip to main content
Log in

A novel diabetic retinopathy grading using modified deep neural network with segmentation of blood vessels and retinal abnormalities

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new DR grading for solving the aforementioned problems. The initial process of the proposed model is the pre-processing, which is performed by median filtering. The segmentation of blood vessels and retinal abnormalities like exudates, microaneurysm, and hemorrhages is also done for grading the DR. Before initiating the segmentation of those components, optic disc removal is opted using the open-close watershed transform. Once the optic disc is removed, adaptive active contour methodology is used for performing the blood vessel segmentation. As a major contribution, the threshold value of the active contour method is optimized using proposed FNU-GOA with the aim of maximizing the accuracy of the blood vessel segmented images. Further, the retinal abnormalities like exudates, microaneurysm, and hemorrhages are performed by Otsu thresholding with morphological operation. From both segmented blood vessels and retinal abnormalities, the features like “Gray-Level Co-occurrence Matrix (GLCM)”, “area of Region of Interest (RoI)” and “Local Ternary Pattern (LTP)” are extracted. These features are subjected to the Modified Deep Neural Network (MDNN) for grading the DR. This MDNN focuses on solving the over fitting problems of DNN with the aim of maximizing the accuracy in terms of grading. The improvement of adaptive active contour-based blood vessel segmentation and MDNN-based grading is progressively dependent on the proposed Fitness-based Newly Updated Grasshopper Optimization Algorithm (FNU-GOA). This new algorithm improves the efficiency of grading with better convergence results. The experimental results show promising results as compared with other systems when analyzing various performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. A. of Ophthalmology. The Eye M.D. Association, International clinical diabetic retinppathy disease severity scale (2002)

  2. Akhade SB, Deshmukh VU, Deosarkar SB (2014). Automatic optic disc detection in digital fundus images using image processing techniques, international conference on information communication and embedded systems (ICICES2014), 1–5

  3. Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–71. https://doi.org/10.1016/j.compbiomed.2013.11.014

  4. Alyoubi WL, Shalash WM, Abulkhair MF (2020) Diabetic retinopathy detection through deep learning techniques: A review. Inf Med Unlocked 20:100377. https://doi.org/10.1016/j.imu.2020.100377

  5. Amalia R, Bustamam A, Sarwinda D Detection and description generation of diabetic retinopathy using convolutional neural network and long short-term memory. J Phys 2021, 1722:012010

  6. Anitha A, Maheswari SU (2021) Diabetic retinopathy detection using local ternary pattern, Int J Biomed Eng Technol, 34(4)

  7. Araújo T, Aresta G, Mendonça L, Penas S, Maia C, Carneiro Â, Mendonça AM, Campilho A (2020). DR|GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images, Med Image Anal, 63

  8. Arora S, Singh H, Sharma M, Sharma S, Anand P (2019) A new hybrid algorithm based on Grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. IEEE Access 1–1. https://doi.org/10.1109/access.2019.2897325

  9. Basit A (2015) Fraz Muhammad Moazam, optic disc detection and boundary extraction in retinal images. Appl Opt 54(11):3440–3447

  10. Beiji Z, Changlong C, Chengzhang Z, Xuanchu D, Zailiang C (2018) Classified optic disc localization algorithm based on verification model. Comput Graphics 70:281–287. https://doi.org/10.1016/j.cag.2017.07.031

  11. Charumathi S, Banu R, Chee ML, Lee R, Wang YX, Tan G, Jonas JB, Lamoureux EL, Cheng CY, Klein BEK, Mitchell P, Klein R, Cheung CMG, Wong TY (2018) Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol 7(2):140–149. https://doi.org/10.1016/S2213-8587(18)30128-1

  12. Chen C, Wei J, Peng C, Zhang X, Qin H (2020) Improved saliency detection in RGB-D images using two-phase depth estimation and selective deep fusion. IEEE Trans Image Process 1–1. https://doi.org/10.1109/tip.2019.2934350

  13. Chen C, Wang G, Peng C, Zhang X, Qin H (2020) Improved robust video saliency detection based on long-term spatial-temporal information. IEEE Trans Image Process 29:1090–1100

    Article  MathSciNet  Google Scholar 

  14. Chen C, Wei J, Peng C, Qin H (2021) Depth-quality-aware salient object detection. IEEE Trans Image Process 30:2350–2363

    Article  Google Scholar 

  15. Daniel W, Jacob S, Ruschel MD (2013) A morphologic twostage approach for automated optic disk detection in color eye fundus images. Pattern Recogn 34(5):476–485. https://doi.org/10.1016/j.patrec.2012.12.011

  16. de Bruijne M (2016) Machine learning approaches in medical image analysis: from detection to diagnosis. Med Image Anal 33. https://doi.org/10.1016/j.media.2016.06.032

  17. De La Calleja J, Tecuapetla L, Auxilio Medina M, Bárcenas E, Urbina Nájera AB, (2014) LBP and Machine Learning for Diabetic Retinopathy Detection. Lect Notes Comput Sci 110–117. https://doi.org/10.1007/978-3-319-10840-7_14

  18. Esmaeili M, Rabbani H, Dehnavi AM (2012) Automatic optic disk boundary extraction by the use of curvelet transform and deformable variational level set model. Pattern Recogn 45(7):2832–2842

    Article  Google Scholar 

  19. Faust O, Acharya R, Ng UEYK, Ng KH, Suri JS (2012) Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 36:145–157

    Article  Google Scholar 

  20. Fiandono I, Firdausy K (2018) Median filtering for optic disc segmentation in retinal image, Kinetik Game Technol Inf Syst Comput Network Comput Electron Control, 3(1)

  21. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37(7):1597–1605. https://doi.org/10.1109/tmi.2018.2791488

  22. Gadekallu TR, Khare N, Bhattacharya S, Singh S, Maddikunta PKR, Srivastava G (2020) Deep neural networks to predict diabetic retinopathy, J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-020-01963-7

  23. Gulshan V et al, (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs, JAMA - J Am Med Assoc.

  24. Gulshan V, Peng L, Coram M, Stumpe MCMC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22):2402–2410

    Article  Google Scholar 

  25. Haneda S, Yamashita H (2010) International clinical diabetic retinopathy disease severity scale. Nippon rinsho, Japanese J Clin Med

  26. Harding SP, Broadbent DM, Neoh C, White MC, Vora J (1995) Sensitivity and specificity of photography and direct ophthalmoscopy in screening for sight threatening eye disease, the Liverpool diabetic eye study. BMJ 311:1131–1135

    Article  Google Scholar 

  27. Hassan G, Hassanien AE, Elbendary N, Fahmy A (2015) Blood vessel segmentation approach for extracting the vasculature on retinal fundus images using Particle Swarm Optimization. 2015 11th International Computer Engineering Conference (ICENCO). https://doi.org/10.1109/icenco.2015.7416364

  28. He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2017.322

  29. He A, Li T, Li N, Wang K, Fu H (2021) CABNet: category attention block for imbalanced diabetic retinopathy grading. IEEE Trans Med Imaging 40:143-153

  30. Jayasankar J, Krishnaraj N, Prakash BSF, Kumar V (2021) An intelligent particle swarm optimization with convolutional neural network for diabetic retinopathy classification model. J Med Imaging Health Inf 11(3):803–809

    Article  Google Scholar 

  31. Kipli K, Jiris C, Sahari SK, Sapawi R (2018) Morphological and Otsu’s thresholding-based retinal blood vessel segmentation for detection of retinopathy, Int J Eng Technol, 7

  32. Lu S (2011) Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging 30(12):2126–2133

    Article  Google Scholar 

  33. Madhumitha S, Manikandan M (2018) Quantitative analysis of marker-based watershed image segmentation. Department of Electronics Engineering, Madras institute of technology, Anna University, 114(5)

  34. Maksoud MEA, Barakat S, Elmogy M, (2020) A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection, Comput Biol Med 126

  35. Martinez-Murcia FJ, Ortiz A, Ramírez J, Górriz JM, Cruz R (2020). Deep residual transfer learning for automatic diagnosis and grading of diabetic retinopathy. Neurocomput 452. https://doi.org/10.1016/j.neucom.2020.04.148

  36. Megalai M, Elamaran D, Vayanaperumal R (2019) GLCM-based detection and classification of microaneurysm in diabetic retinopathy fundus images, Int J Adv Intell Paradigms, 14

  37. Porwal P, Pachade S, Kokare M et al (2020) IDRiD: diabetic retinopathy – segmentation and grading challenge. Med Image Anal 59:101561

  38. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy, Procedia Comput Sci 90:200–205. https://doi.org/10.1016/j.procs.2016.07.014

  39. Pundikal M, Holi MS (2020) Detection of microaneurysms using Grey wolf optimization for early diagnosis of diabetic retinopathy. Int J Intell Eng Syst 13(6):208–218

    Google Scholar 

  40. Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR (2018) Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Info Sci 441:41–49. https://doi.org/10.1016/j.ins.2018.01.051

  41. Rashmi P, Puhan NB, Ganapati P (2017) Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybern Biomed Eng 37(3):466–476. https://doi.org/10.1016/j.bbe.2017.05.008

  42. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical image computing and computer-assisted intervention – MICCAI 2015. Springer International Publishing, Cham, pp 234–241

    Chapter  Google Scholar 

  43. Sangita B (2017) Automatic segmentation of optic disk in retinal images. Biomed Signal Process Control 31:483–498

    Article  Google Scholar 

  44. Sarathi MP, Kishore DM, Anushikha S, Carlos MT (2016) Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed Signal Process Control 25:108–117

    Article  Google Scholar 

  45. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  46. Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR (2019) Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmol 126(4):552–564

    Article  Google Scholar 

  47. Sekou TB, Hidane M, Olivier J,Cardot H (2019) From patch to image segmentation using fully convolutional networks – application to retinal images. ArXiv, abs/1904.03892

  48. Seoud L, Chelbi J, Cheriet F, (2015) Automatic grading of diabetic retinopathy on a public database proceedings of the ophthalmic medical image analysis second international workshop

  49. Shaban M, Ogur Z, Mahmoud A, Switala A, Shalaby A, Khalifeh HA, Ghazal M, Fraiwan L, Giridharan G, Sandhu H, El-Baz AS (2020) A convolutional neural network for the screening and staging of diabetic retinopathy. PLoS One 15(6):e0233514

    Article  Google Scholar 

  50. Sharma O, Saxena H (2020) Diabetic retinopathy using Lstm-Rnn. IntJ Innov Technol Expl Eng (IJITEE) 9(6):1771–1774

    Google Scholar 

  51. Torre J, Valls A, Puig D (2020) A deep learning interpretable classifier for diabetic retinopathy disease grading. Neuro comput 396:465–476

    Google Scholar 

  52. Wang X, Li S, Chen C, Fang Y, Hao A, Qin H (2021) Data-level recombination and lightweight fusion scheme for RGB-D salient object detection. IEEE Trans Image Process 30:458–471

    Article  Google Scholar 

  53. Wu Z, Shi G, Chen Y, Shi F, Chen X, Coatrieux G, Yang J, Luo L, Li S (2020) Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. Artif Intell Med 108:101936

    Article  Google Scholar 

  54. Wu Z, Li S, Chen C, Hao A, Qin H (2020) Rethinking of the image salient object detection: object-level semantic saliency re-ranking first, Pixel-wise Saliency Refinement Latter, Computer Vision Pattern Recognit

  55. Zhang Y, Matuszewski BJ, Shark L-K, Moore CJ (2008) Medical image segmentation using new hybrid level-set method, in Proceedings of the 5th international conference BioMedical visualization (MediVis ‘08), 71–76, London, UK

  56. Zhang W, Zhong J, Yang S, Gao Z, Hu J, Chen Y, Yi Z (2019) Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge Based Syst 175:12–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paresh Chandra Sau.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sau, P.C., Bansal, A. A novel diabetic retinopathy grading using modified deep neural network with segmentation of blood vessels and retinal abnormalities. Multimed Tools Appl 81, 39605–39633 (2022). https://doi.org/10.1007/s11042-022-13056-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13056-y

Keywords

Navigation