Skip to main content
Log in

Robust seed selection of foreground and background priors based on directional blocks for saliency-detection system

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Visual perception modelling of saliency detection has received widespread concerns recently from both the cybernetics and computational intelligence domains. In particular, those distinct background and foreground-oriented models are capable of engendering competitive results. The implicitly vital issue of the above computing approaches is how to reliably choose seeds of the foreground and background cues for kicking off the subsequent saliency-detection procedure. To address this barrier, this paper explores the local geometry and statistical attribute of the detected orientational blocks via an improved discrete wavelet frame transform algorithm to estimate the center position of individual salient object in the original input. Specially, the calculated centroid can be regarded as the prominent focus of visual perception in the initial image, which is beneficial to choose the credible seed during the computing of the superpixel-based foreground and background cues. Then, both sides of the complementary and visually oriented cues are integrated concurrently into a dependable and robust saliency map with reliability. Substantial experimental evaluations in term of freely open-access databases testify the effectiveness of the designed framework, and have prove that the designed algorithm is accurate and outperforms the other distinct representative saliency detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection, in IEEE CVPR, pp. 1597–1604

  2. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Sabine S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  3. Borji A, Sihite DN, Itti L (2013) Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans Image Process 22(1):55–69

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai X, Yu H (2017) Saliency detection by conditional generative adversarial network, proc. SPIE, Ninth Int Conf Graphic Image Process 1061541

  5. Chen Z, Wang H, Zhang L, Yan Y, Liao HM (2016) Visual saliency detection based on homology similarity and an experimental evaluation. J Vis Commun Image Represent 40:251–264

    Article  Google Scholar 

  6. Cheng M, Zhang G, Mitra N, Huang X, Hu S (2011) Global Contrast based Salient Region Detection. IEEE CVPR:409–416

  7. Cheng M, Mitra NJ, Huang X, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  8. Cholakkal H, Rajan D, Johnson J (2015) Top-down saliency with locality-constrained contextual sparse coding. BMVC:159.1–159.12

  9. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926

    Article  Google Scholar 

  10. Harel J, Koch C, Perona P (2006) Graph-based visual saliency. Adv. Neural Inf. Process. Syst.:545–552

  11. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach, in: IEEE Conference on Computer Vision and Pattern Recognition. 1–8

  12. Huang K, Zhu C, and Li G (2018) “Robust salient object detection via fusing foreground and background priors,” in 2018 IEEE International Conference on Image Processing (ICIP). pp. 2341–2345

  13. Itti L, Koch C, Niebur E (1998) A model of saliency based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  14. Jian M, Lam KM, Dong J (2014) Facial-feature detection and localization based on a hierarchical scheme. Inf Sci 262:1–14

    Article  Google Scholar 

  15. Jian M, Qi Q, Dong J, Sun X, Sun Y, Lam KM (2017) Saliency detection using quaternionic distance based weber local descriptor and level priors. Multimedia Tools Appl:1–18

  16. Jian M, Qi Q, Dong J, Sun X, Lam KM (2018) Integrating QDWD with pattern distinctness and local contrast for underwater saliency detection. J Vis Commun Image Represent 53:31–41

    Article  Google Scholar 

  17. Jian M, Zhang W, Yu H, Cui C, Nie X, Zhang H, Yin Y (2018) Saliency detection based on orientational blocks extraction and principal local colour contrast. J Vis Commun Image Represent 57:1–11

    Article  Google Scholar 

  18. Jian M, Yin Y, Dong J, Lam KM (May 2018) Content-based image retrieval via a hierarchical-local-feature extraction scheme. Multimed Tools Appl 77(21):29099–29117

    Article  Google Scholar 

  19. Jian M, Dong J, Gong M, et al. (2019) Learning the Traditional Art of Chinese Calligraphy via Three-dimensional Reconstruction and Assessment, IEEE Transactions on Multimedia, pp. 1–10

  20. Jian M, Qi Q, Yu H, Dong J, Cui C, Nie X, Zhang H, Yin Y, Lam KM (2019) The extended marine underwater environment database and baseline evaluations. Appl Soft Comput 80:425–437

    Article  Google Scholar 

  21. Jian M, Wang R, Yu H, Dong J, Lam KM (2019) November 18-21, 2019, Lanzhou, China. Saliency Detection via Robust Seed Selection of Foreground Priors, APSIPA:797–801

  22. Jian M, Wang J, Dong J, … Yin Y (2020) Saliency detection using multiple low-level priors and a propagation mechanism. Multimed Tools Appl 79:33467–33482

    Article  Google Scholar 

  23. Kong Y, Wang L, Liu X, Lu H, Ruan X (2016) Pattern mining saliency. European Conference on Computer Vision 9910:583–598

    Google Scholar 

  24. Li L, Zhou F, Zheng Y, Bai X (2018) Saliency detection based on foreground appearance and background-prior. Neurocomputing 301:46–61

    Article  Google Scholar 

  25. Li Z, Lang C, Feng S, Wang T (2018) Saliency ranker: a new salient object detection method. J Vis Commun Image Represent 50:16–26

    Article  Google Scholar 

  26. Liu T, Sun J, Zheng N, Tang X, and Shum H-Y (2007) “Learning to detect a salient object,” in IEEE CVPR, pp. 1–8

  27. Liu Z, Gu G, Chen C, Cui D, Lin C 2017 Background priors based saliency object detection. 2016 Asia-Pacific signal and information processing association annual summit and conference (APSIPA)

  28. Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing, in: ACM International Conference on Multimedia, pp. 374–381

  29. Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, colour, and texture cues. IEEE Pattern Anal Mach Intell 26(5):530–549

    Article  Google Scholar 

  30. Mazza V, Turatto M, Umiltà C (2005) Foreground–background segmentation and attention: a change blindness study. Psychol Res 69(3):201–210

    Article  Google Scholar 

  31. Mishra AK, Aloimonos Y, Cheong LF, Kassim A (2012) Active visual segmentation. IEEE Trans Pattern Anal Mach Intell 34:639–653

    Article  Google Scholar 

  32. Murray N, Vanrell M, Otazu X, Parraga CA (2011) Saliency estimation using a non-parametric low-level vision model, in: IEEE CVPR. pp. 433–440

  33. Oliva A, Torralba A, Castelhano MS, Henderson JM (2003) Top-down control of visual attention in object detection. IEEE ICIP 1:253–256

    Google Scholar 

  34. Oszusta M (2019) No-reference quality assessment of noisy images with local features and visual saliency models. Inf Sci 482:334–349

    Article  Google Scholar 

  35. OTSU N (1979) A threshold selection method from gray level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  36. Qin Y, Lu H, Xu Y, Wang H (2015) Saliency detection via cellular automata, in: IEEE Conference on Computer Vision and Pattern Recognition, , pp. 110–119.

  37. Rahtu E, Kannala J, Salo M, Heikkilä J (2010) Segmenting salient objects from images and videos, in: European Conference on Computer Vision pp. 366–379

  38. Tao D, Yang K, Li Y, Yan H (2016) Where does the driver look? Top-down-based saliency detection in a traffic driving environment. IEEE Trans Intell Transp Syst 17(7):2051–2062

    Article  Google Scholar 

  39. Toet A (2011) Computational versus psychophysical bottom-up image saliency: a comparative evaluation study. IEEE Trans Pattern Anal Mach Intell 33(11):2131–2146

    Article  Google Scholar 

  40. Tong N, Lu H, Zhang L, Ran X (2014) Saliency detection with multi-scale superpixels. IEEE Signal Process Lett 21(9):1035–1039

    Article  Google Scholar 

  41. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560

    Article  MathSciNet  Google Scholar 

  42. Wang G, Pan Z, Zhang Z (2019) Deep CNN Denoiser prior for multiplicative noise removal. Multimed Tools Appl 78:29007–29019

    Article  Google Scholar 

  43. Wang J, Lu H, Li X, Tong N, Liu W (2015) Saliency detection via background and foreground seed selection. Neurocomputing 152:359–368

    Article  Google Scholar 

  44. Wang L, Qian X, Zhang Y, Shen J, Cao X (2020) Enhancing sketch-based image retrieval by cnn semantic re-ranking. IEEE Trans Cybern 50(7):3330–3342

    Article  Google Scholar 

  45. Wang Q, Yuan Y, Yan P, Li X (2013) Visual saliency by selective contrast. IEEE Trans Circuits Syst Video Technol 23(7):1150–1155

    Article  Google Scholar 

  46. Wang Q, Yuan Y, Yan P, Li X (2013) Saliency detection by multiple-instance learning. IEEE Trans Cybern 43(2):660–672

    Article  Google Scholar 

  47. Wang Y, Wang G, Chen C, Pan Z (2019) Multi-scale dilated convolution of convolutional neural network for image Denoising. Multimed Tools Appl 78:19945–19960

    Article  Google Scholar 

  48. Wang Z, Tian G (2019) Salient Object Detection based on Multiple Priors Fusion. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, pp. 1904–1909

  49. Xie Y, Lu H (2011) Visual saliency detection based on Bayesian model, in: Proceedings of IEEE International Conference on Image Processing.pp. 645–648.

  50. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical Saliency Detection. IEEE International Conference on Computer Vision and Pattern Recognition, pp.1155–1162,

  51. Yang C, Zhang L, Lu H (2013) Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Proces Lett 20(7):637–640

    Article  Google Scholar 

  52. Yang J, Yang MH (2017) Top-down visual saliency via joint crf and dictionary learning. IEEE Trans Pattern Anal Mach Intell 39(3):576–588

    Article  Google Scholar 

  53. Zhai Y, Shah M (2006) Visual attention detection in video sequences using spatiotemporal cues, in: ACM International Conference on Multimedia, pp. 815–824

  54. Zhang L, Gao Y, Xia Y, Lu K, Shen J, Ji R (2014) Representative Discovery of Structure Cues for Weakly-Supervised Image Segmentation. IEEE Trans Multimedia 16(2):470–479

    Article  Google Scholar 

  55. Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection, in: IEEE CVPR, pp. 2814–2821

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC) (61976123, 61601427, 61876098); the Taishan Young Scholars Program of Shandong Province; Royal Society - K. C. Wong International Fellowship (NIF\R1\180909); and Key Development Program for Basic Research of Shandong Province (ZR2020ZD44).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Xu or Hui Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, M., Wang, R., Xu, H. et al. Robust seed selection of foreground and background priors based on directional blocks for saliency-detection system. Multimed Tools Appl 82, 427–451 (2023). https://doi.org/10.1007/s11042-022-13125-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13125-2

Keywords

Navigation