Skip to main content

Advertisement

Log in

Perceptive low-light image enhancement via multi-layer illumination decomposition model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The images captured under low light conditions generally have less than satisfactory visual quality. To address this issue, many low-light image enhancement methods have been studied. However, these existing algorithms mostly suffer from unnaturalness, over-enhancement and artifacts. In this paper, a perceptive low-light image enhancement via multi-layer illumination decomposition model is proposed, to preserve the naturalness and improve the contrast for low-light images. First, the contrast of the target image is defined from global, local and the effect of noise aspects. Then, inspired by the human visual system, the perceptive contrast is designed by combining the defined contrast with just-noticeable-difference transformation. Last and most importantly, the target image is decomposed in a multi-layer way based on the multi-scale adaptive filter, which utilizes the perceptive contrast to decide the variance adaptively. This step can effectively obtain multiple illumination and reflectance layers. Combining these reflectance with adjusted illumination components can generate the final enhanced result. The proposed method has better no-reference quantitative measurement results than other compared methods. Experimental results on several public challenging low-light image datasets demonstrate that the proposed method can achieve great performance in balancing the contrast, brightness and naturalness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://dragon.larc.nasa.gov/retinex/pao/news

References

  1. Abdullah-Al-Wadud M, Kabir MH, Dewan MAA, CHae O (2007) A dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53(2):593–600

    Article  Google Scholar 

  2. Cheng H, Long W, Li y, Liu H (2020) Two low illuminance image enhancement algorithms based on grey level mapping. Multimed Tools Appl

  3. Chou CH, Li YC (1995) Perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Trans on Circuits & Systems for Video Technology 5(6):467–476

    Article  Google Scholar 

  4. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  5. Dicarlo JM, Wandell BA (2006) Rendering high dynamic range images. Proc Spie 3956:392–401

    Google Scholar 

  6. Dong X, Wang G, Pang Y, Li W, Wen J, Meng W, Lu Y (2011) Fast efficient algorithm for enhancement of low lighting video. In: 2011 IEEE international conference on multimedia and expo (ICME), pp 1–6

  7. Edoardo P, Luca DC, Alessandro R, Daniele M (2005) Mathematical definition and analysis of the retinex algorithm. J Opt Soc Am A: Opt Image Sci Vis 22(12):2613–21

    Article  MathSciNet  Google Scholar 

  8. Eilertsen G, Mantiuk RK, Unger J (2015) Real-time noise-aware tone mapping. ACM Trans Graph 34(6):1–15

    Article  Google Scholar 

  9. Fattal R, Lischinski D, Werman M (2002) Gradient domain high dynamic range compression. 21(3)

  10. Feng X, Li J, Hua Z (2020) Low-light image enhancement algorithm based on an atmospheric physical model. Multimed Tools Appl 79(3)

  11. Fu X, Liao Y, Zeng D, Huang Y, Zhang X, Ding X (2015) A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans Image Process 24(12):4965–4977

    Article  MathSciNet  Google Scholar 

  12. Fu X, Zeng D, Huang Y, Liao Y, Ding X, Paisley J (2016) A fusion-based enhancing method for weakly illuminated images. Signal Process 129:82–96

    Article  Google Scholar 

  13. Gonzalez RC, Woods RE (2007) Digital Image Processing, 3rd. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  14. Govind LP, Josemartin MJ (2019) Kerala Application of multi-stage filtering and multi-layer model in the context of dark and non uniformly illuminated images. In: 2019 2Nd international conference on intelligent computing, instrumentation and control technologies (ICICICT), vol 1, pp 615–620

  15. Gu K, Wang S, Zhai G, Ma S, Yang X, Lin W, Zhang W, Gao W (2016) Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure. IEEE Transactions on Multimedia 18(3):432–443

    Article  Google Scholar 

  16. Gu K, Lin W, Zhai G, Yang X, Zhang W, Chen CW (2017) No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans Cybern 47(12):4559–4565

    Article  Google Scholar 

  17. Guo C, Li C, Guo J, Loy CC, Hou J, Kwong S, Cong R (2020) Zero-reference deep curve estimation for low-light image enhancement. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 1777–1786

  18. Guo X, Li Y, Ling H (2017) Lime: Low-light image enhancement via illumination map estimation. IEEE Trans Image Process 26(2):982–993

    Article  MathSciNet  Google Scholar 

  19. Hao S, Han X, Guo Y, Xu X, Wang M (2020) Low-light image enhancement with semi-decoupled decomposition. IEEE Transactions on Multimedia 22(12):3025–3038

    Article  Google Scholar 

  20. Jayant N (1992) Signal compression: technology targets and research directions. IEEE Journal on Selected Areas in Communications 10(5):796–818

    Article  Google Scholar 

  21. Jobson DJ, Rahman Z, Woodell GA (1997a) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 6(7):965–976

    Article  Google Scholar 

  22. Jobson DJ, Rahman Z, Woodell GA (1997b) Properties and performance of a center/surround retinex. IEEE Trans Image Process 6(3):451–462

    Article  Google Scholar 

  23. Kimmel R, Elad M, Shaked D (2003) Keshet r, A variational framework for retinex. Int J Comput Vis, Sobel I

  24. Land EH (1977) The retinex theory of color vision. Sci Am 237 (6):108–129

    Article  Google Scholar 

  25. Lee C, Lee C, Kim C (2012) Contrast enhancement based on layered difference representation. In: 2012 IEEE international conference on image processing (ICIP), pp 965–968

  26. Li L, Wang R, Wang W, Gao W (2015) A low-light image enhancement method for both denoising and contrast enlarging. In: 2015 IEEE international conference on image processing (ICIP), pp 3730–3734

  27. Li M, Liu J, Yang W, Sun X, Guo Z (2018) Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans Image Process 27(6):2828–2841

    Article  MathSciNet  Google Scholar 

  28. Liao S, Hu Y, Xiangyu Z, Li SZ (2015) Person re-identification by local maximal occurrence representation and metric learning. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 2197–2206

  29. Lim J, Heo M, Lee C, Kim CS (2017) Contrast enhancement of noisy low-light images based on structure-texture-noise decomposition. J Vis Commun Image Represent 45:107–121

    Article  Google Scholar 

  30. Lore KG, Akintayo A, Sarkar S (2017) Llnet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn 61:650–662

    Article  Google Scholar 

  31. Ma K, Zeng K, Wang Z (2015) Perceptual quality assessment for multi-exposure image fusion. IEEE Trans Image Process 24(11):3345–3356

    Article  MathSciNet  Google Scholar 

  32. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters 20(3):209–212

    Article  Google Scholar 

  33. Panetta KA, Wharton EJ, Agaian SS (2008) Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans Syst Man Cybern Part B (Cybern) 38(1):174–188

    Article  Google Scholar 

  34. Pisano ED, Zong S, Hemminger BM, Deluca M, Johnston RE, Muller K, Braeuning MP, Pizer SM (1998) Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J Digit Imaging 11(4):193–200

    Article  Google Scholar 

  35. Qiao Y, Liu Y, Yang X, Zhou D, Xu M, Zhang Q, Wei X (2020) Attention-guided hierarchical structure aggregation for image matting. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 13673–13682

  36. Ren X, Yang W, Cheng W, Liu J (2020) Lr3m: Robust low-light enhancement via low-rank regularized retinex model. IEEE Trans Image Process 29:5862–5876

    Article  MathSciNet  Google Scholar 

  37. Selim SZ, Ismail MA (1984) K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI- 6(1):81–87

    Article  Google Scholar 

  38. Steyer S, Lenk C, Kellner D, Tanzmeister G, Wollherr D (2020) Grid-based object tracking with nonlinear dynamic state and shape estimation. IEEE Trans Intell Transp Syst 21(7):2874–2893

    Article  Google Scholar 

  39. Wang C, Ye Z (2005) Brightness preserving histogram equalization with maximum entropy: a variational perspective. IEEE Trans Consum Electron 51(4):1326–1334

    Article  Google Scholar 

  40. Wang D, Niu X, Dou Y (2014) A piecewise-based contrast enhancement framework for low lighting video. In: 2014 IEEE international conference on security, pattern analysis, and cybernetics (SPAC), pp 235–240

  41. Wang LW, Liu ZS, Siu WC, Lun DPK (2020) Lightening network for low-light image enhancement. IEEE Trans Image Process 29:7984–7996

    Article  Google Scholar 

  42. Wang R, Zhang Q, Fu C, Shen X, Zheng W, Jia J (2019) Underexposed photo enhancement using deep illumination estimation. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 6842–6850

  43. Wang S, Luo G (2018) Naturalness preserved image enhancement using a priori multi-layer lightness statistics. IEEE Trans Image Process 27(2):938–948

    Article  MathSciNet  Google Scholar 

  44. Wang S, Zheng J, Hu HM, Li B (2013) Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process 22(9):3538–3548

    Article  Google Scholar 

  45. Wu Y, Song W, Zheng J, Liu F (2021) Non-uniform low-light image enhancement via non-local similarity decomposition model. Signal Processing Image Communication 93(2):116141

    Article  Google Scholar 

  46. Xu J, Hou Y, Ren D, Liu L, Zhu F, Yu M, Wang H, Shao L (2020) Star: a structure and texture aware retinex model. IEEE Trans Image Process 29:5022–5037

    Article  Google Scholar 

  47. Xu K, Yang X, Yin B, Lau RWH (2020) Learning to restore low-light images via decomposition-and-enhancement. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 2278–2287

  48. Xu X, Luo X, Ma L (2020) Context-aware hierarchical feature attention network for multi-scale object detection. In: 2020 IEEE international conference on image processing (ICIP), pp 2011–2015

  49. Xueyang F, Delu Z, Yue H, Xiaoping Z, Xinghao D (2016) A weighted variational model for simultaneous reflectance and illumination estimation. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2782–2790

  50. Yang W, Wang S, Fang Y, Wang Y, Liu J (2020) From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 3060–3069

  51. Yu L, Su H, Jung C (2018) Perceptually optimized enhancement of contrast and color in images. IEEE Access 6:36132–36142

    Article  Google Scholar 

  52. Zhang C, Yan Q, Zhu Y, Li X, Sun J, Zhang Y (2020) Attention-based network for low-light image enhancement. arXiv:2005.09829

  53. Zhang X, Shen P, Luo L, Zhang L, Song J (2012) Enhancement and noise reduction of very low light level images. In: 2012 IEEE international conference on pattern recognition (ICPR), pp 2034–2037

  54. Zhang Y, Zhang J, Guo X (2019) Kindling the darkness: a practical low-light image enhancer. arXiv:1905.04161

  55. Zhu M, Pan P, Chen W, Yang Y (2020) Eemefn: Low-light image enhancement via edge-enhanced multi-exposure fusion network. In: AAAI Conference on artificial intelligence (AAAI), vol 34, pp 13106–13113

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by National Natural Science Foundation of China under Grant 61702278, in part by Priority Academic Program Development of Jiangsu Higher Education Institutions and in part by Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX18_0902.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zheng, J., Song, W. et al. Perceptive low-light image enhancement via multi-layer illumination decomposition model. Multimed Tools Appl 81, 40905–40929 (2022). https://doi.org/10.1007/s11042-022-13139-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13139-w

Keywords

Navigation