Skip to main content
Log in

Automated classification of multi-class sleep stages classification using polysomnography signals: a nine- layer 1D-convolution neural network approach

  • 1199: Computational Intelligence Revolution in Multimedia Data Analytics and Business Management
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Sleep disorder diseases have one of the major health issues across the world. To handle this issue the primary step taken by most of the sleep experts is the sleep staging classification. The whole visual inspection process is carried out manually by the sleep experts, which can be a highly time-consumed task and creates a lot of annotation errors due to more human interventions. In this study, we introduce an efficient and robust approach to improve the sleep staging accuracy. In this paper, we proposed an automated deep nine-layer one-dimensional convolution neural network for multi-class sleep staging classification (9 L-1D-CNN-SSC) using polysomnography (PSG) signals. The proposed 9 L-1D-CNN-SSC model comprises eleven layers with learnable parameters: nine convolution layers and two fully connected layers. The main objective of designing such a model is to achieve higher classification accuracy for multiclass sleep stages classifications with reduced learnable parameters. The proposed network architecture is tested on two different subgroups recordings of ISRUC-Sleep datasets namely ISRUC-Sleep subgroup1 (ISR-SG-I), and ISRUC-Sleep subgroup3 (ISR-SG-III). The proposed model is compiled with eight different individual experiments based on a single-channel electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), and combinations of EEG + EOG+ EMG signals. The proposed 9 L-1D-CNN-SSC model achieved the highest classification accuracy of 99.03%, 99.50%, and 99.03% for three to five sleep stages classification, respectively with single-channel of EEG signals, similarly, the model achieved 98.93% for two-state sleep stage classification with EMG signals using the ISR-SG-I dataset. The same model achieved the highest classification accuracy of 98.88%, 98.76%, and 98.67% for three-five sleep stages classification with a single-channel EMG signal, and 99.24% for two-state sleep classification with single-channel EOG using ISR-SG-III dataset. It has been observed that the obtained results from the proposed 9 L-1D-CNN-SSC model give the best classification accuracy performance on multiclass sleep stages classification incomparable to the existing literature works. The developed 9 L-1D-CNN-SSC deep learning architecture is ready for clinical usage with high PSG data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All EEG files are available from the ISRUC-SLEEP database (https://sleeptight.isr.uc.pt/ISRUC_Sleep/).

References

  1. Abdollahpour M, Rezaii TY, Farzamnia A, Saad I (2020) Transfer learning convolutional neural network for sleep stage classification using two-stage data fusion framework, in IEEE access 8, 180618-180632, https://doi.org/10.1109/ACCESS.2020.3027289

  2. Acharya UR, Faust O, Kannathal N, Chua T, Laxminarayan S (2005) Non-linear analysis of EEG signals at various sleep stages. Comput Methods Prog Biomed 80(1):37–45. https://doi.org/10.1016/j.cmpb.2005.06.011

    Article  Google Scholar 

  3. Acharya UR, Chua ECP, Chua KC, Min LC, Tamura T (2010) Analysis and automatic identification of sleep stages using higher order spectra. Int J Neural Syst 20(06):509–521. https://doi.org/10.1142/s0129065710002589

    Article  Google Scholar 

  4. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, Tan RS (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396. https://doi.org/10.1016/j.compbiomed.2017.08.022

    Article  Google Scholar 

  5. Akyol K. (2020) Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection Expert Systems with Applications, 113239. https://doi.org/10.1016/j.eswa.2020.113239

  6. Tharwat Alaa (2018) AdaBoost classifier: an overview. https://doi.org/10.13140/RG.2.2.19929.01122.

  7. Awujoola O, Francisca O, Odion P (2020) Effective and Accurate Bootstrap Aggregating (Bagging) Ensemble Algorithm Model for Prediction and Classification of Hypothyroid Disease. International Journal of Computer Applications 176:40–48. https://doi.org/10.5120/ijca2020920542

    Article  Google Scholar 

  8. Bajaj V, Pachori RB (2013) Automatic classification of sleep stages based on the time-frequency image of EEG signals. Comput Methods Prog Biomed 112(3):320–328. https://doi.org/10.1016/j.cmpb.2013.07.006

    Article  Google Scholar 

  9. Basha AJ, Balaji BS, Poornima S, Prathilothamai M,Venkatachalam K (2020) Support vector machine and simple recurrent network based automatic sleep stage classification of fuzzy kernel. Journal of ambient intelligence and humanized computing. 10.1007/s12652-020-02188-4

  10. Boashash B, Ouelha S (2016) Automatic signal abnormality detection using time-frequency features and machine learning: a newborn EEG seizure case study. Knowl Based Syst 106:38–50

    Article  Google Scholar 

  11. Carskadon MA, Dement WC (2005) Normal human sleep: an overview. Principles Pract Sleep Med 4:13–23. https://doi.org/10.1016/j.mcna.2004.01.001

    Article  Google Scholar 

  12. Chambon S, Galtier MN, Arnal PJ, Wainrib G, Gramfort A (2018) A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(4):758–769. https://doi.org/10.1109/tnsre.2018.2813138

    Article  Google Scholar 

  13. Chen Z (2020) Effective and efficient batch normalization using a few uncorrelated data for statistics estimation. IEEE Transactions on Neural Networks and Learning Systems 32:348–362. https://doi.org/10.1109/TNNLS.2020.2978753

    Article  MathSciNet  Google Scholar 

  14. Cooray N, Andreotti F, Lo C, Symmonds M, Hu MTM, De Vos M (2019) Detection of REM sleep behaviour disorder by automated polysomnography analysis. Clin Neurophysiol 130:505–514. https://doi.org/10.1016/j.clinph.2019.01.011

    Article  Google Scholar 

  15. Cui Z, Zheng X, Shao X, Cui L (2018) Automatic sleep stage classification based on convolutional neural network and finegrained segments. Hindawi Complex 2018:9248410. https://doi.org/10.1155/2018/9248410

    Article  Google Scholar 

  16. Dimitriadis SI, Salis C, Linden D (2018) A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates. Clin Neurophysiol 129(4):815–828. https://doi.org/10.1016/j.clinph.2017.12.039

    Article  Google Scholar 

  17. Diykh M, Li Y, Abdulla S (2019) EEG sleep stages identification based on weighted undirected complex networks. Computer methods and programs in biomedicine, 105116. 10.1016/j.cmpb.2019.105116

  18. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Prog Biomed 161:1–13. https://doi.org/10.1016/j.cmpb.2018.04.005

    Article  Google Scholar 

  19. Fernandez-Blanco E, Rivero D, Pazos A (2019) Convolutional neural networks for sleep stage scoring on a two-channel EEG signal. Soft Comput 24:4067–4079. https://doi.org/10.1007/s00500-019-04174-1

    Article  Google Scholar 

  20. Fraiwan L, Lweesy K, Khasawneh N, Wenz H, Dickhaus H (2012) Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier, Comput. Methods Progr Biomed 108, 10–19. https://doi.org/10.1016/j.cmpb.2011.11.005u.r.

  21. Fraiwan L, Hassanin O, Fraiwan M, Khassawneh B, Ibnian AM, Alkhodari M (2020). Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybernetics and Biomedical Engineering. https://doi.org/10.1016/j.bbe.2020.11.003

  22. Garcés Correa A, Orosco L, Laciar E (2014) Automatic detection of drowsiness in EEG records based on multimodal analysis. Med Eng Phys 36(2):244–249. https://doi.org/10.1016/j.medengphy.2013.07.011

    Article  Google Scholar 

  23. Gevins Alan S (1994) Non-invasive human neurocognitive performance capability testing method and system, U.S. Pat

  24. Ghimatgar H, Kazemi K, Helfroush MS, Aarabi A (2019) An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model Journal of Neuroscience Methods, 108320. https://doi.org/10.1016/j.jneumeth.2019.108320

  25. Goel N, Rao H, Durmer J, Dinges D (2009) Neurocognitive consequences of sleep deprivation. Semin Neurol 29(04):320–339. https://doi.org/10.1055/s-0029-123711

    Article  Google Scholar 

  26. Guillot A, Sauvet F, During EH, Thorey V (2020) Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging. IEEE transactions on neural systems and rehabilitation engineering, 1–1. https://doi.org/10.1109/tnsre.2020.3011181

  27. Güler I, Ubeyli ED (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 148(2):113–121. https://doi.org/10.1016/j.jneumeth.2005.04.013

    Article  Google Scholar 

  28. Güler NF, Übeyli ED, Güler İ (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 29:506–514. https://doi.org/10.1016/j.eswa.2005.04.011

    Article  Google Scholar 

  29. Hassan AR, Bhuiyan MI (2016) A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features. J Neurosci Methods 271:107–118. https://doi.org/10.1016/j.jneumeth.2016.07.012

    Article  Google Scholar 

  30. Hassan AR, Bhuiyan MIH (2017) An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting. Neurocomputing 219:76–87. https://doi.org/10.1016/j.neucom.2016.09.011

    Article  Google Scholar 

  31. Hassan AR, Bhuiyan MIH (2017 Mar) Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting. Comput Methods Prog Biomed 140:201–210. https://doi.org/10.1016/j.cmpb.2016.12.015

    Article  Google Scholar 

  32. Hassan AR, Hassan Bhuiyan MI (2016) Automatic sleep scoring using statistical features in the EMD domain and ensemble methods. Biocybernetics and Biomedical Engineering 36(1):248–255

    Article  Google Scholar 

  33. Hassan AR, Subasi A (2017) A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowl-Based Syst 128:115–124. https://doi.org/10.1016/j.knosys.2017.05.005

    Article  Google Scholar 

  34. Hassan AR, Bashar SK, Bhuiyan, MIH (2015) On the classification of sleep states by means of statistical and spectral features from single channel Electroencephalogram. 2015 International conference on advances in computing, Communications and Informatics (ICACCI) https://doi.org/10.1109/icacci.2015.7275950

  35. Hochreiter S, Schmidhuber J (1997 Nov 15) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  36. Hori T, Sugita Y, Koga E, Shirakawa S, Inoue K, Uchida S, Kuwahara H, Kousaka M, Kobayashi T, Tsuji Y, Terashima M, Fukuda K, Fukuda N (2001) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, the rechtschaffen & kales (1968) standard. Psychiatr Clin Neurosci 55:305–310. https://doi.org/10.1046/j.1440-1819.2001.00810.x

    Article  Google Scholar 

  37. Hsu YL, Yang YT, Wang JS, Hsu CY (2013) Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing 104:105–114. https://doi.org/10.1016/j.neucom.2012.11.003

    Article  Google Scholar 

  38. Huang CS, Lin CL, Yang WY, Ko LW, Liu SY, Lin CT (2013) Applying the fuzzy cmeans based dimension reduction to improve the sleep classification system, 2013 IEEE Int. Conf. Fuzzy Syst, pp. 1–5,https://doi.org/10.1109/FUZZ-IEEE.2013.6622495

  39. Hussein R, Palangi H, Ward RK, Wang ZJ (2019) Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals. Clin Neurophysiol 130(1):25–37. https://doi.org/10.1016/j.clinph.2018.10.010

    Article  Google Scholar 

  40. Ieracitano C, Mammone N, Bramanti A, Hussain A, Morabito FC (2018) A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing. https://doi.org/10.1016/j.neucom.2018.09.071

  41. Ieracitano C, Mammone N, Bramanti A, Hussain A, Morabito FC (2018) A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing 323:96–107

    Article  Google Scholar 

  42. Imtiaz SA, Rodriguez-Villegas E (2015) Automatic sleep staging using state machine-controlled decision trees. Conf Proc IEEE Eng Med Biol Soc 2015:378–381. https://doi.org/10.1109/EMBC.2015.7318378

    Article  Google Scholar 

  43. Isaac F-V, Elena H-P, Moret-Bonillo V (2018) A convolutional network for the classification of sleep stages. Proceedings. 2:1174. https://doi.org/10.3390/proceedings2181174

    Article  Google Scholar 

  44. Jadhav P, Rajguru G, Datta D, Mukhopadhyay S (2020) Automatic sleep stage classification using time–frequency images of CWT and transfer learning using convolution neural network. Biocybernetics and Biomedical Engineering. 10.1016/j.bbe.2020.01.010

  45. Jiao Z, Gao X, Wang Y, Li J, Xu H (2018) Deep convolutional neural networks for mental load classification based on EEG data. Pattern Recogn 76:582–595. https://doi.org/10.1016/j.patcog.2017.12.002

    Article  Google Scholar 

  46. Jolliffe I (2011) Principal component analysis. International encyclopedia of statistical science, 1094–1096. https://doi.org/10.1007/978-3-642-04898-2_455.

  47. Kalbkhani H, Ghasemzadeh PG, Shayesteh M (2018) Sleep Stages Classification from EEG Signal based on Stockwell Transform IET Signal Processing 2018

  48. Khalighi S, Sousa T, Oliveira D, Pires G, Nunes U (2011) Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM. Annu Int Conf IEEE Eng Med Biol Soc 2011:3306–3309. https://doi.org/10.1109/IEMBS.2011.6090897

    Article  Google Scholar 

  49. Khalighi S, Sousa T, Santos JM, Nunes U (2015) ISRUC-sleep: a comprehensive public dataset for sleep researchers. Comput Methods Prog Biomed 2016(124):180–192. https://doi.org/10.1016/j.cmpb.2015.10.013

    Article  Google Scholar 

  50. Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. Lect Notes Comput Sci 171–182. https://doi.org/10.1007/3-540-57868-4_57

  51. Korkalainen H (2020) Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep Apnea.IEEE Journal of Biomedical and Health Informatics 24(7), 2073–2081. https://doi.org/10.1109/JBHI.2019.2951346.

  52. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst

  53. Lajnef T, Chaibi S, Ruby P, Aguera PE, Eichenlaub JB, Samet M, Kachouri A (2015) Jerbi K (2015) learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. J Neurosci Methods 250:94–105. https://doi.org/10.1016/j.jneumeth.2015.01.022

    Article  Google Scholar 

  54. Lajnef T, Chaibi S, Ruby P (2015) Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. J Neurosci Methods 250:94–105. https://doi.org/10.1016/j.jneumeth.2015.01.022

    Article  Google Scholar 

  55. Li Y, Luo ML, Li K (2016) A multiwavelet-based time-varying model identification approach for time–frequency analysis of EEG signals. Neurocomputing 193:106–114. https://doi.org/10.1016/j.neucom.2016.01.062

    Article  Google Scholar 

  56. Li X, La R, Wang Y, Niu J, Zeng S, Sun S, Zhu J (2019) EEG-based mild depression recognition using convolutional neural network. Med Biol Eng Comput 57(6):1341–1352. https://doi.org/10.1007/s11517-019-01959-2

    Article  Google Scholar 

  57. Li X, La R, Wang Y, Niu J, Zeng S, Sun S, Zhu J (2019) EEG-based mild depression recognition using convolutional neural network. Med biol Eng Comput. https://doi.org/10.1007/s11517-019-01959-2

  58. Lovrek I, Howlett RJ, Jain LC. (2008) Knowledge-based intelligent information and engineering systems. Lect Notes Comput Sci https://doi.org/10.1007/978-3-540-85565-1

  59. Memar P, Faradji F (2018) A novel multi-class EEG-based sleep stage classification system. IEEE Trans Neural Syst Rehabil Eng. 26(1):84–95. https://doi.org/10.1109/TNSRE.2017.2776149

    Article  Google Scholar 

  60. Michielli N, Acharya UR, Molinari F (2019) Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med 106:71–81. https://doi.org/10.1016/j.compbiomed.2019.01.013

    Article  Google Scholar 

  61. Mienye ID, Sun Y, Wang Z (2020). Improved sparse autoencoder based artificial neural network approach for prediction of heart disease Informatics in Medicine Unlocked, 100307. https://doi.org/10.1016/j.imu.2020.100307

  62. Mousavi Z, Yousefi Rezaii T, Sheykhivand S, Farzamnia A, Razavi SN (2019). Deep convolutional neural network for classification of sleep stages from single-channel EEG signals. J Neurosci Methods, 108312. https://doi.org/10.1016/j.jneumeth.2019

  63. Nagabushanam P, Thomas George S, Radha S (2019) EEG signal classification using LSTM and improved neural network algorithms. Soft Computing https://doi.org/10.1007/s00500-019-04515-0

  64. Najdi S, Gharbali AA, Fonseca JM (2017) Feature transformation based on stacked sparse auto encoders for sleep stage classification. Technological Innovation for Smart Systems 2017:191–200. https://doi.org/10.1007/978-3-319-56077-9_18

    Article  Google Scholar 

  65. Nakamura T, Adjei T, Alqurashi Y, Looney D, Morrell MJ, Mandic DP (2017) Complexity science for sleep stage classification from EEG. In proceedings of the international joint conference on neural networks, Anchorage, AK, USA, 14–19 may 2017.

  66. Nannapas B, Pichayoot O, Pitshaporn L, Payongkit L, Busarakum C, Jaimchariyatam Nattapong, Chuangsuwanich Ekapol, Chen Wei, Phan Huy, Dilokthanakul Nat, Wilaiprasitporn Theerawit. (2020). MetaSleepLearner: a pilot study on fast adaptation of bio-signals-based sleep stage classifier to new individual subject using Meta-learning.

  67. Nejedly P, Cimbalnik J, Klimes P, Plesinger F, Halamek J, Kremen V, Viscor I, Brinkmann BH, Pail M, Brazdil M, Worrell G, Jurak P (2019) Intracerebral EEG Artifact Identification Using Convolutional Neural Networks. Neuroinformatics. 17(2):225–234. https://doi.org/10.1007/s12021-018-9397-6

    Article  Google Scholar 

  68. Oh SL, Ng EYK, Tan RS, Acharya UR (2018) Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med 102:278–287. https://doi.org/10.1016/j.compbiomed.2018.06.002

    Article  Google Scholar 

  69. Tsinalis Orestis, Matthews Paul, Guo Yike, Zafeiriou Stefanos (2016) Automatic Sleep Stage Scoring with Single-Channel EEG Using Convolutional Neural Networks

  70. Parrino L, Grassi A, Milioli G (2014) Cyclic alternating pattern in polysomnography: what is it and what does it mean? Curr Opin Pulm Med 20(6):533–541. https://doi.org/10.1097/MCP.0000000000000100

    Article  Google Scholar 

  71. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  72. Penzel T, Conradt R (2000) Computer based sleep recording and analysis. Sleep Med Rev 4(2):131–148. https://doi.org/10.1053/smrv.1999.0087

    Article  Google Scholar 

  73. Powers DM (2011) Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation

  74. Pudil P, Novovičová J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15:1119–1125. https://doi.org/10.1016/0167-8655(94)90127-9

    Article  Google Scholar 

  75. Rahman MM, Bhuiyan MIH, Hassan AR (2018) Sleep stage classification using single-channel EOG. Comput Biol Med 102:211–220. https://doi.org/10.1016/j.compbiomed.2018.08.022

    Article  Google Scholar 

  76. Rechtschaffen A (1968) A manual for standardized terminology, techniques and scoring system for sleep stages in human subjects. Brain inform service 1968

  77. Reynolds CF, O’Hara R (2013) DSM-5 sleep-wake disorders classification: overview for use in clinical practice. Am J Psychiatr 170(10):1099–1101. https://doi.org/10.1176/appi.ajp.2013.13010058

    Article  Google Scholar 

  78. Rosenberg RS, Van Hout S (2013) The American Academy of sleep medicine inter-scorer reliability program: sleep stage scoring. J Clin Sleep Med 09:81–87. https://doi.org/10.5664/jcsm.2350

    Article  Google Scholar 

  79. Sanders TH, McCurry M, Clements MA (2014) Sleep stage classification with cross frequency coupling. Annu Int Conf IEEE Eng Med Biol Soc 4579-82. https://doi.org/10.1109/EMBC.2014.6944643.

  80. Seifpour S, Niknazar H, Mikaeili M, Nasrabadi AM (2018) A new automatic sleep staging system based on statistical behavior of local Extrema using single channel EEG signal. Expert Syst Appl 104:277–293. https://doi.org/10.1016/j.eswa.2018.03.020

    Article  Google Scholar 

  81. Şen B, Peker M, Çavuşoğlu A (2014) A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J Med Syst 38:18. https://doi.org/10.1007/s10916-014-0018-0

    Article  Google Scholar 

  82. Sharma M, Goyal D, Achuth PV, Acharya UR (2018) An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Computers in Biology and Medicine 98:58–75. https://doi.org/10.1016/j.compbiomed.2018.04.025

    Article  Google Scholar 

  83. Shen H, Ran F, Xu M, Guez A, Li A, Guo A (2020) An automatic sleep stage classification algorithm using improved model based essence features. Sensors 20(17):4677. https://doi.org/10.3390/s20174677

    Article  Google Scholar 

  84. Shuyuan X, Bei W, Jian Z, Qunfeng Z, Junzhong Z, Nakamura M (2015) An improved K-means clustering algorithm for sleep stages classification, 2015 54th Annu. Conf.Soc. Instrum. Control Eng. Japan, pp. 1222–1227m https://doi.org/10.1109/SICE.2015.7285326Ijim

  85. Silveiral T, Kozakevicius J, Rodrigues R (2016) Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain. International Federation For. Medical and Biological Engineering.

  86. Simões H, Pires G, Nunes U, Silva V (n.d.) Feature Extraction and Selection for Automatic Sleep Staging using EEG. In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, 3, 128–133. https://doi.org/10.5220/0002950601280133

  87. Sors A, Bonnet S, Mirek S, Vercueil L, Payen JF (2018) A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomed Signal Process Control 42:107–114. https://doi.org/10.1016/j.bspc.2017.12.001

    Article  Google Scholar 

  88. Sousa T, Cruz A, Khalighi S, Pires G, Nunes U (2015) A two-step automatic sleep stage classification method with dubious range detection. Comput Biol Med 59:42–53

    Article  Google Scholar 

  89. Sturm I, Lapuschkin S, Samek W, Müller KR (2016) Interpretable deep neural networks for single-trial EEG classification. J Neurosci Methods 274:141–145. https://doi.org/10.1016/j.jneumeth.2016.10.008

    Article  Google Scholar 

  90. Sun C, Chen C, Fan J, Li W, Zhang Y, Chen W (2019) A hierarchical sequential neural network with feature fusion for sleep staging based on EOG and RR signals. J Neural Eng 16:066020. https://doi.org/10.1088/1741-2552/ab39ca

    Article  Google Scholar 

  91. Sun C, Fan J, Chen C, Li W, Chen W (2019) A two-stage neural network for sleep stage classification based on feature learning, sequence learning, and data augmentation. IEEE Access 7:109386–109397. https://doi.org/10.1109/ACCESS.2019.2933814

    Article  Google Scholar 

  92. Supratak A, Dong H, Wu C, Guo Y (2017) DeepSleepNet: a model for automatic sleep stage scoring based on raw Single-Channel EEG. IEEE Trans Neural Syst Rehabil Eng 25(11):1998–2008. https://doi.org/10.1109/TNSRE.2017.2721116

    Article  Google Scholar 

  93. Tagluk ME, Sezgin N, Akin M (2010) Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG. J Med Syst 34:717–725. https://doi.org/10.1007/s10916-009-9286-5

    Article  Google Scholar 

  94. Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor imagery using deep convolutional neural networks. International Journal for Light and Electron Optics, 130, 11–18. https://doi.org/10.1016/j.ijleo.2016.10.117

  95. Tripathy RK, Rajendra Acharya U (2018) Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. Biocybernetics and Biomedical Engineering 38:890–902. https://doi.org/10.1016/j.bbe.2018.05.005

    Article  Google Scholar 

  96. Tzimourta KD, Tsimbaris A, Tzioukalia K, Tzallas AT, Tsipouras MG, Asktrakas LG, Giannakeas N (2018) EEG based automatic sleep stage classification. Biomed J Sci tech res. https://doi.org/10.26717/BJSTR.2018.07.001535.

  97. Wan H, Wang HB, and Liu J (2019) A novel Gaussian mixture model for classification," 2019 IEEE international conference on systems, man and cybernetics (SMC), Bari, Italy, pp. 3298–3303. https://doi.org/10.1109/SMC.2019.8914215.

  98. Wang Q, Zhao D,Wang Y,Hou X (2019) Ensemble learning algorithm based on multi-parameters for sleep staging. Medical & Biological Engineering & Computing. 10. 1007/s11517-019-01978-z

  99. Wei L, Lin Y, Wang J, Ma Y (2017) Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG, 2017 IEEE 29th Int. Conf. Tools with Artif. Intell, 88–95. https://doi.org/10.1109/ICTAI.2017.00025

  100. Yan R, Zhang C, Spruyt K, Wei L, Wang Z, Tian L, Cong F (2019) Multi-modality of polysomnography signals’ fusion for automatic sleep scoring. Biomedical Signal Processing and Control 49:14–23. https://doi.org/10.1016/j.bspc.2018.10.001

    Article  Google Scholar 

  101. Yildirim Ö (2018) A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput Biol Med 96:189–202. https://doi.org/10.1016/j.compbiomed.2018.03.016

    Article  Google Scholar 

  102. Yildirim O, Baloglu U, Acharya U (2019) A deep learning model for automated sleep stages classification using PSG signals. Int J Environ Res Public Health 16(4):599. https://doi.org/10.3390/ijerph16040599

    Article  Google Scholar 

  103. Zhang T (2021) Sleep staging using plausibility score: a novel feature selection method based on metric learning. IEEE Journal of Biomedical and Health Informatics 25(2):577–590. https://doi.org/10.1109/JBHI.2020.2993644

    Article  Google Scholar 

  104. Zhang S, Li X, Zong M (2017) Learning k, for KNN classification, ACM trans. Intell.Syst Technol 8(3) 43(1–19)

  105. Zhang X, Xu M, Li Y, Su M, Xu Z, Wang C, Han D (2020) Automated multi-model deep neural network for sleep stage scoring with unfiltered clinical data. Sleep and Breathing 24:581–590. https://doi.org/10.1007/s11325-019-02008-w

    Article  Google Scholar 

  106. Zhu G, Li Y, Wen P (2014) Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG. IEEE Journal of Biomedical and Health Informatics 18(6), 1813–1821, https://doi.org/10.1109/JBHI.2014.2303991.

  107. Zhu T, Luo W, Yu F (2020) Convolution-and attention-based neural network for automated sleep stage classification. Int J Environ Res Public Health 17(11):4152. https://doi.org/10.3390/ijerph17114152

    Article  Google Scholar 

Download references

Funding

This study is not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Satapathy.

Ethics declarations

Ethics approval

All procedures performed in studies involving human partici-pants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

All the authors in the paper have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, S.K., Loganathan, D. Automated classification of multi-class sleep stages classification using polysomnography signals: a nine- layer 1D-convolution neural network approach. Multimed Tools Appl 82, 8049–8091 (2023). https://doi.org/10.1007/s11042-022-13195-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13195-2

Keywords

Navigation