Skip to main content
Log in

A fusion approach based on black hole algorithm and particle swarm optimization for image enhancement

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The main objective of this paper is to present a new 2-stage hybrid optimization algorithm based scheme named PSO-BHA for image enhancement. A parameterized mapping function and a novel objective function are utilized in this paper to achieve the best-enhanced images. The suggested scheme combines the merits of particle swarm optimization (PSO) with the black hole algorithm (BHA) in two sequential stages to find the best parameters for the mapping function with the aid of the proposed objective function. The objective function uses contrast, edge, entropy, and universal quality index (UQI) for measuring contrast, and different improved information in the enhanced image. In the proposed scheme, PSO is applied first to adjust the tunable parameters of the mapping function and as a result, new pixel intensities are produced. Then, in the second stage, the obtained pixel intensities are again passed through the mapping function whose parameters are tuned by the use of the BHA. The suggested framework overcomes the limitations of the traditional histogram equalization (HE) based enhancement techniques in which excessive contrast enhancement and image information loss can occur. The suggested method is evaluated on several test images and compared with different state-of-the-art methods. The results indicate that the proposed framework provides superior performance to all existing methods in terms of various metrics. The proposed scheme also contributes to substantial feature enhancement and contrast boosting in the enhanced image, while retaining the natural feel of the original image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdulwahab HA, Noraziah A, Alsewari AA, Salih SQ (2019) An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems. IEEE Access 7:142085–142096. https://doi.org/10.1109/access.2019.2937021

    Article  Google Scholar 

  2. Akram T, Khan MA, Sharif M, Yasmin M (2018) Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features. J Ambient Intell Humaniz Comput 0:3. https://doi.org/10.1007/s12652-018-1051-5

    Article  Google Scholar 

  3. Al-Ameen Z (2018) Expeditious contrast enhancement for grayscale images using a new swift algorithm. Stat Optim Inf Comput 6:577–587. https://doi.org/10.19139/soic.v6i4.436

    Article  Google Scholar 

  4. Al-Ameen Z, Sulong G (2015) A new algorithm for improving the low contrast of computed tomography images using tuned brightness controlled single-scale Retinex. Scanning 37:116–125. https://doi.org/10.1002/sca.21187

    Article  Google Scholar 

  5. Anupriya A, Akashtayal A (2012) Comparison of hybrid and classical metaheuristic for automatic image enhancement. Int J Comput Appl 46:39–44

    Google Scholar 

  6. Asokan A, Popescu DE, Anitha J, Hemanth DJ (2020) Bat algorithm based non-linear contrast stretching for satellite image enhancement. Geosciences 10:78. https://doi.org/10.3390/geosciences10020078

    Article  Google Scholar 

  7. Bhandari AK, Maurya S, Meena AK (2018) Social spider optimization based optimally weighted otsu thresholding for image enhancement. IEEE J Sel Top Appl Earth Obs Remote Sens. https://doi.org/10.1109/JSTARS.2018.2870157

    Article  Google Scholar 

  8. Bhandari AK, Kandhway P, Maurya S (2020) Salp swarm algorithm based optimally weighted histogram framework for image enhancement. IEEE Trans Instrum Meas 1–1. https://doi.org/10.1109/tim.2020.2976279

  9. Cai J, Gu S, Zhang L (2018) Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans Image Process 27:2049–2062. https://doi.org/10.1109/TIP.2018.2794218

    Article  MathSciNet  MATH  Google Scholar 

  10. Campos GFC, Mastelini SM, Aguiar GJ et al (2019) Machine learning hyperparameter selection for Contrast Limited Adaptive Histogram Equalization. Eurasip J Image Video Process 2019:1–18. https://doi.org/10.1186/s13640-019-0445-4

    Article  Google Scholar 

  11. Chen J, Yu W, Tian J et al (2018) Image contrast enhancement using an artificial bee colony algorithm. Swarm Evol Comput 38:287–294. https://doi.org/10.1016/j.swevo.2017.09.002

    Article  Google Scholar 

  12. Chen Y, Xu W, Zuo J, Yang K (2019) The fire recognition algorithm using dynamic feature fusion and IV-SVM classifier. Cluster Comput 22:7665–7675. https://doi.org/10.1007/s10586-018-2368-8

    Article  Google Scholar 

  13. Chen Y, Wang J, Chen X et al (2019) Single-image super-resolution algorithm based on structural self-similarity and deformation block features. IEEE Access 7:58791–58801. https://doi.org/10.1109/ACCESS.2019.2911892

    Article  Google Scholar 

  14. Chen Y, Wang J, Liu S et al (2019) Multiscale fast correlation filtering tracking algorithm based on a feature fusion model. Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.5533

    Article  Google Scholar 

  15. Chen Y, Wang J, Xia R et al (2019) The visual object tracking algorithm research based on adaptive combination kernel. J Ambient Intell Humaniz Comput 10:4855–4867. https://doi.org/10.1007/s12652-018-01171-4

    Article  Google Scholar 

  16. Chen Y, Tao J, Liu L et al (2020) Research of improving semantic image segmentation based on a feature fusion model. J Ambient Intell Humaniz Comput 1:3. https://doi.org/10.1007/s12652-020-02066-z

    Article  Google Scholar 

  17. Chen Y, Tao J, Zhang Q et al (2020) Saliency detection via the improved hierarchical principal component analysis method. Wirel Commun Mob Comput. https://doi.org/10.1155/2020/8822777

  18. Chen Y, Liu L, Tao J et al (2020) The improved image inpainting algorithm via encoder and similarity constraint. Vis Comput 1:3. https://doi.org/10.1007/s00371-020-01932-3

    Article  Google Scholar 

  19. da Costa Oliveira AL, Britto A (2020) A differential evolution algorithm for contrast optimization. Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Science and Business Media, Deutschland GmbH, pp 179–194

  20. Dhal KG, Das S (2019) A dynamically adapted and weighted Bat algorithm in image enhancement domain. Evol Syst 10:129–147. https://doi.org/10.1007/s12530-018-9216-1

    Article  Google Scholar 

  21. Dhal KG, Ray S, Das A, Das S (2019) A survey on nature-inspired optimization algorithms and their application in image enhancement domain. Arch Comput Methods Eng 26:1607–1638. https://doi.org/10.1007/s11831-018-9289-9

    Article  MathSciNet  Google Scholar 

  22. Gonzalez RC, Woods RE (2018) Digital image processing, 4th, illustr ed. Pearson, London

  23. Gopikakumari VLJ (2013) IEM: A new image enhancement metric for contrast and sharpness measurements. Int J Comput Appl 79:1–9. https://doi.org/10.5120/13766-1620

    Article  Google Scholar 

  24. Gorai A, Ghosh A (2009) Gray-level image enhancement by particle swarm optimization. In: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings. pp 72–77

  25. Gupta K, Gupta A (2012) Image enhancement using ant colony optimization. IOSR J VLSI Signal Process (IOSR-JVSP) 1:38–45

    Article  Google Scholar 

  26. Hatamlou A (2013) Black hole: A new heuristic optimization approach for data clustering. Inf Sci (Ny) 222:175–184. https://doi.org/10.1016/j.ins.2012.08.023

    Article  MathSciNet  Google Scholar 

  27. Hoseini P, Shayesteh MG (2013) Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. Digit Signal Process A Rev J 23:879–893. https://doi.org/10.1016/j.dsp.2012.12.011

    Article  MathSciNet  Google Scholar 

  28. Jasmine J, Annadurai S (2019) Real time video image enhancement approach using particle swarm optimisation technique with adaptive cumulative distribution function based histogram equalization. Meas J Int Meas Confed 145:833–840. https://doi.org/10.1016/j.measurement.2018.12.105

    Article  Google Scholar 

  29. Kamoona AM, Patra JC (2019) A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images. Appl Soft Comput 85:105749. https://doi.org/10.1016/j.asoc.2019.105749

    Article  Google Scholar 

  30. Kandhway P, Bhandari AK, Singh A (2020) A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization. Biomed Signal Process Control 56:101677. https://doi.org/10.1016/j.bspc.2019.101677

    Article  Google Scholar 

  31. Khan MA, Akram T, Sharif M et al (2018) CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features. Comput Electron Agric 155:220–236. https://doi.org/10.1016/j.compag.2018.10.013

    Article  Google Scholar 

  32. Khan MA, Akram T, Sharif M et al (2019) Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech 82:741–763. https://doi.org/10.1002/jemt.23220

    Article  Google Scholar 

  33. Khan MA, Lali MIU, Sharif M et al (2019) An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection. IEEE Access 7:46261–46277. https://doi.org/10.1109/ACCESS.2019.2908040

    Article  Google Scholar 

  34. Khan MA, Khan MA, Ahmed F et al (2020) Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognit Lett 131:193–204. https://doi.org/10.1016/j.patrec.2019.12.024

    Article  Google Scholar 

  35. Liang K, Ma Y, Xie Y et al (2012) A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Phys Technol 55:309–315. https://doi.org/10.1016/j.infrared.2012.03.004

    Article  Google Scholar 

  36. Limare N, Lisani J-L, Morel J-M et al (2011) Simplest color balance. Image Process Line 1. https://doi.org/10.5201/ipol.2011.llmps-scb

  37. Lisani J-L, Petro A-B, Sbert C (2012) Color and contrast enhancement by controlled piecewise affine histogram equalization. Image Process Line 2:243–265. https://doi.org/10.5201/ipol.2012.lps-pae

    Article  Google Scholar 

  38. Luo Y, Qin J, Xiang X et al (2020) Coverless real-time image information hiding based on image block matching and dense convolutional network. Journal of Real-Time Image Processing. Springer, Berlin, pp 125–135

  39. Mahapatra PK, Ganguli S, Kumar A (2015) A hybrid particle swarm optimization and artificial immune system algorithm for image enhancement. Soft Comput 19:2101–2109. https://doi.org/10.1007/s00500-014-1394-6

    Article  Google Scholar 

  40. Malik R, Dhir R, Mittal SK (2018) Remote sensing and landsat image enhancement using multiobjective PSO based local detail enhancement. J Ambient Intell Humaniz Comput 10:3563–3571. https://doi.org/10.1007/s12652-018-1082-y

    Article  Google Scholar 

  41. Mondal SK, Chatterjee A, Tudu B (2018) A hybrid particle swarm optimization and artificial bee colony algorithm for image contrast enhancement. Lecture Notes in Networks and Systems. Springer, Berlin, pp 277–285

  42. Morel J-M, Petro A-B, Sbert C (2014) Screened poisson equation for image contrast enhancement. Image Process Line 4:16–29. https://doi.org/10.5201/ipol.2014.84

    Article  Google Scholar 

  43. Muniyappan S, Rajendran P (2019) Contrast enhancement of medical images through Adaptive Genetic Algorithm (AGA) over Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Multimed Tools Appl 78:6487–6511. https://doi.org/10.1007/s11042-018-6355-0

    Article  Google Scholar 

  44. Nasir M, Attique Khan M, Sharif M et al (2018) An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 81:528–543. https://doi.org/10.1002/jemt.23009

    Article  Google Scholar 

  45. Nickfarjam AM, Ebrahimpour-Komleh H (2017) Multi-resolution gray-level image enhancement using particle swarm optimization. Appl Intell 47:1132–1143. https://doi.org/10.1007/s10489-017-0931-2

    Article  Google Scholar 

  46. Pashaei E, Aydin N (2017) Binary black hole algorithm for feature selection and classification on biological data. Appl Soft Comput J 56:94–106. https://doi.org/10.1016/j.asoc.2017.03.002

    Article  Google Scholar 

  47. Pashaei E, Pashaei E, Aydin N (2020) Hybrid krill herd algorithm with particle swarm optimization for image enhancement. In: Kahraman C, Cevik Onar S, Oztaysi B, (eds) International Conference on Intelligent and Fuzzy Systems (INFUS 2020). Springer, Cham, Istanbul, pp 1431–1439

  48. Rahman S, Rahman MM, Abdullah-Al-Wadud M et al (2016) An adaptive gamma correction for image enhancement. Eurasip J Image Video Process 2016:1–13. https://doi.org/10.1186/s13640-016-0138-1

    Article  Google Scholar 

  49. Rundo L, Tangherloni A, Nobile MS et al (2019) MedGA: A novel evolutionary method for image enhancement in medical imaging systems. Expert Syst Appl 119:387–399

    Article  Google Scholar 

  50. Sharif M, Khan MA, Iqbal Z et al (2018) Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Comput Electron Agric 150:220–234. https://doi.org/10.1016/j.compag.2018.04.023

    Article  Google Scholar 

  51. Sun L, Ma C, Chen Y et al (2020) Low rank component induced spatial-spectral kernel method for hyperspectral image classification. IEEE Trans Circuits Syst Video Technol 30:3829–3842. https://doi.org/10.1109/TCSVT.2019.2946723

    Article  Google Scholar 

  52. Sun L, Wu F, Zhan T et al (2020) Weighted nonlocal low-rank tensor decomposition method for sparse unmixing of hyperspectral images. IEEE J Sel Top Appl Earth Obs Remote Sens 13:1174–1188. https://doi.org/10.1109/JSTARS.2020.2980576

    Article  Google Scholar 

  53. True Color Kodak Images (2019) http://r0k.us/graphics/kodak/. Accessed 15 Nov 1999

  54. Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9:81–84. https://doi.org/10.1109/97.995823

    Article  Google Scholar 

  55. Xie W, Wang JS, Tao Y (2019) Improved black hole algorithm based on golden sine operator and levy flight operator. IEEE Access 7:161459–161486. https://doi.org/10.1109/ACCESS.2019.2951716

    Article  Google Scholar 

  56. Yaghoobi S, Hemayat S, Mojallali H (2015) Image gray-level enhancement using Black Hole algorithm. In: 2015 2nd International Conference on Pattern Recognition and Image Analysis, IPRIA 2015. IEEE, Rasht

  57. Yang CC (2006) Image enhancement by modified contrast-stretching manipulation. Opt Laser Technol 38:196–201. https://doi.org/10.1016/j.optlastec.2004.11.009

    Article  Google Scholar 

  58. Ye Z, Wang M, Hu Z, Liu W (2015) An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm. Comput Intell Neurosci 2015. https://doi.org/10.1155/2015/825398

  59. Yue X, Zhang H (2020) A novel industrial image contrast enhancement technique based on an improved ant lion optimizer. Arab J Sci Eng 1–12. https://doi.org/10.1007/s13369-020-05148-4

  60. Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:931256. https://doi.org/10.1155/2015/931256

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang J, Wang W, Lu C et al (2020) Lightweight deep network for traffic sign classification. Ann des Telecommun Telecommun 75:369–379. https://doi.org/10.1007/s12243-019-00731-9

    Article  Google Scholar 

  62. Zhang J, Xie Z, Sun J et al (2020) A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection. IEEE Access 8:29742–29754. https://doi.org/10.1109/ACCESS.2020.2972338

    Article  Google Scholar 

  63. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Graphics Gems. Elsevier, Amsterdam, pp 474–485

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elnaz Pashaei.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors to publish this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashaei, E., Pashaei, E. A fusion approach based on black hole algorithm and particle swarm optimization for image enhancement. Multimed Tools Appl 82, 297–325 (2023). https://doi.org/10.1007/s11042-022-13275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13275-3

Keywords

Navigation