Skip to main content
Log in

Construction of S-box based on chaotic piecewise map: Watermark application

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The spread of using communication technologies has made it necessary to take certain measures to prevent illegal copying. Watermarking techniques are of great potential value in this regard. The present study introduces a watermarking scheme as a block cypher. We use entropy for sorting the blocks. The sorted blocks after finite ridgelet transformation are hosting the logo. The logo’s information encrypts before transferring into the blocks by the proposed S-box. We introduce a piecewise non-linear chaotic map for generating the S-box. The ergodic nature of introducing a map is proved by the invariant measure. The ergodic nature of the map is providing an excellent confusion property for encryption. The ability of the watermarked image to resist the attacks is an exam with statistical analysis(PSNR and MSE). The performance of generated S-box is studying with corresponding attacks (Non-linearity, SAC, BIC, LP, and DP). The results are close to the optimal value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akhshani A, Behnia S, Akhavan A, Lim SC, Hassan Z (2010) International Journal of Modern Physics C 21(02):275

    Article  Google Scholar 

  2. Al Solami E, Ahmad M, Volos C, Doja MN, Beg MMS (2018) Entropy 20(7):525

    Article  Google Scholar 

  3. Al-Haj A (2007) J Comput Sci 3(9):740

    Article  Google Scholar 

  4. Anand A, Singh AK (2020) Comput Commun 152:72

    Article  Google Scholar 

  5. Anees A, Ahmed Z (2015) Wirel Pers Commun 82(3):1497

    Article  Google Scholar 

  6. Bagadi KP, Das S (2013) Neural Comput Applic 23(3):1071

    Article  Google Scholar 

  7. Barani MJ, Ayubi P, Valandar MY, Irani BY (2020) Multimed Tools Appl 79(3):2127

    Article  Google Scholar 

  8. Barani MJ, Valandar MY, Ayubi P (2015) .. In: 2015 7th Conference on information and knowledge technology (IKT). IEEE, pp 1–5

  9. Barni M, Bartolini F, Cappellini V, Piva A (1998) Signal Process 66(3):357

    Article  Google Scholar 

  10. Batool SI, Shah T, Khan M (2014) Neural Comput Applic 25(7):2037

    Article  Google Scholar 

  11. Behnia S, Ahadpour S, Ayubi P (2014) Appl Soft Comput 21:481

    Article  Google Scholar 

  12. Behnia S, Akhavan A, Akhshani A, Samsudin A (2011) J Comput Appl Math 235(12):3455

    Article  MathSciNet  Google Scholar 

  13. Behnia S, Akhshani A, Ahadpour S, Mahmodi H, Akhavan A (2007) Phys Lett A 366(4-5):391

    Article  Google Scholar 

  14. Behnia S, Akhshani A, Mahmodi H, Akhavan A (2008) Chaos, Solitons & Fractals 35(2):408

    Article  MathSciNet  Google Scholar 

  15. Behnia S, Teshnehlab M, Ayubi P (2010) Commun Nonlinear Sci Numer Simul 15(9):2469

    Article  MathSciNet  Google Scholar 

  16. Behnia S, Yahyavi M, Habibpourbisafar R (2017) Chaos, Solitons & Fractals 104:6

    Article  Google Scholar 

  17. Biham E, Shamir A (1991) J Cryptol 4(1):3

    Article  Google Scholar 

  18. Bilgin B, Daemen J, Nikov V, Nikova S, Rijmen V, Van Assche G (2013) .. In: International conference on smart card research and advanced applications. Springer, pp 187–199

  19. Campisi P, Kundur D, Neri A (2004) IEEE Signal Process Lett 11(10):826

    Article  Google Scholar 

  20. Celik MU, Sharma G, Tekalp AM, Saber E (2005) IEEE Trans Image Process 14(2):253

    Article  Google Scholar 

  21. Chen G (2008) Chaos, Solitons & Fractals 36(4):1028

    Article  MathSciNet  Google Scholar 

  22. Chen G, Chen Y, Liao X (2007) Chaos, Solitons Fractals 31 (3):571

    Article  MathSciNet  Google Scholar 

  23. Chen YH, Huang HC (2015) Neural Comput Applic 26(2):291

    Article  Google Scholar 

  24. Cornfeld I, Fomin S (1982) Ergodic theory. pp 193–199

  25. Cusick TW, Stanica P (2017) Cryptographic Boolean functions and applications. Academic Press

  26. Daemen J, Rijmen V (2013) .

  27. Djurovic I, Stankovic S, Pitas I (2001) J Netw Comput Appl 24(2):167

    Article  Google Scholar 

  28. Do MN, Vetterli M (2003) IEEE Trans Image Process 12(1):16

    Article  MathSciNet  Google Scholar 

  29. Dorfman JR (1999) An introduction to chaos in nonequilibrium statistical mechanics 14, Cambridge University Press

  30. Farah T, Rhouma R, Belghith S (2017) Nonlinear Dyn 88 (2):1059

    Article  Google Scholar 

  31. Farri E, Ayubi P (2018) Nonlinear Dyn 93(4):1875

    Article  Google Scholar 

  32. Ghosal SK, Mandal JK (2014) J Inf Secur Appl 19(4-5):272

    Google Scholar 

  33. Hu HT, Hsu LY (2016) AEU-International Journal of Electronics and Communications 70(2):172

    Google Scholar 

  34. Huifang H, Hongyan Z (2016) Appl Res Comput 6:47

    Google Scholar 

  35. Hussain I (2013) Math Comput Model 57(3-4):963

    Article  Google Scholar 

  36. Hussain I, Shah T, Gondal MA (2012) Nonlinear Dyn 70 (3):1791

    Article  Google Scholar 

  37. Hussain I, Shah T, Mahmood H, Gondal MA (2012) Comput Math Appl 64(8):2450

    Article  MathSciNet  Google Scholar 

  38. Huynh-Thu Q, Ghanbari M (2008) Electronics Lett 44(13):800

    Article  Google Scholar 

  39. Islam M, Roy A, Laskar RH (2020) Neural Comput Applic 32(5):1379

    Article  Google Scholar 

  40. Jakimoski G, Kocarev L (2001) Ieee Transactions on Circuits and Systems i: Fundamental Theory and Applications 48(2):163

    Article  MathSciNet  Google Scholar 

  41. Jamal SS, Khan MU, Shah T (2016) Wirel Pers Commun 90(4):2033

    Article  Google Scholar 

  42. Khan M (2015) Nonlinear Dyn 82(1):527

    Article  Google Scholar 

  43. Khan M, Shah T (2015) Neural Comput Applic 26(4):845

    Article  Google Scholar 

  44. Khan M, Shah T, Batool SI (2016) Neural Comput Applic 27(3):677

    Article  Google Scholar 

  45. Khan M, Shah T, Gondal MA (2013) Nonlinear Dynamics 73(3):1795

    Article  MathSciNet  Google Scholar 

  46. Khan M, Shah T, Mahmood H, Gondal MA, Hussain I (2012) Nonlinear Dyn 70(3):2303

    Article  Google Scholar 

  47. Lambić D (2020) Nonlinear Dyn 100(1):699

    Article  MathSciNet  Google Scholar 

  48. Lin SD, Chen CF (2000) IEEE Trans Consum Electron 46 (3):415

    Article  Google Scholar 

  49. Liu Y, Tong X, Ma J (2016) Multimed Tools Appl 75 (13):7739

    Article  Google Scholar 

  50. Lou DC, Tso HK, Liu JL (2007) Computer Standards & Interfaces 29(1):125

    Article  Google Scholar 

  51. Matsui M (1993) .. In: Workshop on the theory and application of of cryptographic techniques. Springer, pp 386–397

  52. Özkaynak F, Özer AB (2010) Phys Lett A 374(36):3733

    Article  Google Scholar 

  53. Özkaynak F, Çelik V, Özer AB (2016) SIViP 4(11):659

    Google Scholar 

  54. Paar C, Pelzl J (2009) Understanding cryptography: a textbook for students and practitioners. Springer Science & Business Media

  55. Posada-Gómez R, Sandoval-González OO, Sibaja AM, Portillo-rodríguez O, Alor-hernández G (2011) Practical Applications and Solutions Using LabVIEWTM Software. pp 297–316

  56. Rawat S, Raman B (2012) Signal Process 92(6):1480

    Article  Google Scholar 

  57. Starck JL, Candès EJ, Donoho DL (2002) IEEE Trans Image Process 11(6):670

    Article  MathSciNet  Google Scholar 

  58. Sujatha S, Sathik MM (2012) Int J Netw Secur 14(4):223

    Google Scholar 

  59. Tang G, Liao X, Chen Y (2005) Chaos, Solitons & Fractals 23(2):413

    Article  Google Scholar 

  60. Tang G, Wang S, Lü H, Hu G (2003) Phys Lett A 318 (4-5):388

    Article  MathSciNet  Google Scholar 

  61. Thakkar F, Srivastava VK (2021) Multimedia Tools and Applications 80(8):12275

    Article  Google Scholar 

  62. Thanki R, Borra S (2019) Multimed Tools Appl 78(10):13905

    Article  Google Scholar 

  63. Varsaki EE, Fotopoulos VE, Skodras AN (2010) .. In: Optics, photonics, and digital technologies for multimedia applications, vol 7723. International Society for Optics and Photonics, p 77230L

  64. Vasudev R (2016) J Image Graph 4(2):150

    Article  Google Scholar 

  65. Wang X, Wang Q (2014) Nonlinear Dyn 75(3):567

    Article  Google Scholar 

  66. Wang Y, Wong KW, Li C, Li Y (2012) Phys Lett A 376 (6-7):827

    Article  Google Scholar 

  67. Waqas UA, Khan M, Batool SI (2020) Multimed Tools Appl 79(9):6891

    Article  Google Scholar 

  68. Webster A, Tavares SE (1985) .. In: Conference on the theory and application of cryptographic techniques. Springer, pp 523–534

  69. Xia Z, Wang X, Wang C, Wang C, Ma B, Li Q, Wang M, Zhao T (2021) Applied Intelligence. pp 1–15

  70. Yaroslavsky LP (2012) Digital picture processing: an introduction, vol 9, Springer Science & Business Media

  71. Ye T, Zhimao L (2018) Nonlinear Dyn 94(3):2115

    Article  Google Scholar 

  72. Yen JC (2001) Electronics Lett 37(2):80

    Article  Google Scholar 

  73. Zhang Q, Li Y, Wei X (2012) J Appl Res Technol 10(3):405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Behnia.

Ethics declarations

Conflict of Interests

Authors Sohrab Behnia and Reza Hoseini Sani have received research grants from the Iranian National Science Foundation (INSF) under grant number 98006790.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Detail of derivation of invariant measure

In this appendix we try to obtain the invariant measure of Piecewise non-linear Chaotic Maps. Denoting the left hand side of Eq.1 by X and inverting it, \(F=\frac {X}{\alpha ^{2} +(\alpha ^{2} -1)X}\), then, taking derivative of F with respect to x, we obtain:

$$ \frac{dF}{dx}=\frac{\alpha^{2}}{(\alpha^{2} +(\alpha^{2} -1)X)^{2}} $$
(13)

Now, by denoting x in 0 ≤ xp1 by x1, x in p1xp2 by x2 and x in p2x ≤ 1 by x3, solving it for x1, x2 and x3 then, taking derivative of x1, x2 and x3 with respect to X, we obtain:

$$ dx_{1}=\frac{p_{1}\alpha^{2}dx}{(\alpha^{2}-X(\alpha^{2} -1))^{2}},\quad dx_{2}=\frac{-p_{2}\alpha^{2}dx}{(\alpha^{2}-X(\alpha^{2} -1))^{2}},\quad dx_{3}=\frac{p_{3}\alpha^{2}dx}{(\alpha^{2}-X(\alpha^{2} -1))^{2}}. $$
(14)

Now, by considering the FP (4),

$$ dx\mu (x)=\mu (x_{1})dx_{1}+\mu (x_{2})dx_{2}+\mu (x_{3})dx_{3} $$

we obtain:

$$ dx\mu (x)=\frac{\alpha^{2}dx}{(\alpha^{2}-X(\alpha^{2} -1))^{2}}(p_{1}\mu (x_{1})dx_{1}-p_{2}\mu (x_{2})dx_{2}+p_{3}\mu (x_{3})dx_{3}) $$
(15)

considering the following anatz for the invariant measure

$$ \mu(x)=\frac{1}{A+Bx} $$
(16)

Equation (15) reduced to the following equation

$$ \frac{1}{A+Bx}=\frac{\alpha^{2}}{(\alpha^{2}-X(\alpha^{2} -1))^{2}}(p_{1}\frac{1}{A+B\frac{XP_{1}}{\alpha^{2}-X(\alpha^{2} -1)}} $$
$$ -(p_{2}\frac{1}{A+B\frac{Xp_{2}}{\alpha^{2}-X(\alpha^{2} -1)}}+(p_{3}\frac{1}{A+B\frac{Xp_{3}}{\alpha^{2}-X(\alpha^{2} -1)}}) $$
(17)

which leads to

$$ B=\frac{1}{p_{3}} \quad A=\frac{p_{3}-p_{1}-p_{2}}{p_{3}} $$
(18)

Appendix B: The analysis of the S-boxes

  • Non-linearity Non-linearity is the most significant feature of the S-box. The non-linearity of a non-linear alternating box indicates the non-linear order of the Boolean functions of the box and it is equal to 112 for the Lorentz replacement box. Non-linearity has been defined through using Walsh Spectrum [25].

    $$ N_{f}=2^{n-1}(1-2^{-n}\max\limits_{\omega\in GF(2^{n})}\mid S_{(f)}(\omega)\mid) $$
    (19)

    In the above equation, S(f)(ω) is the Walsh spectrum for f(x) and is given by:

    $$ S_{(f)}(\omega)=\sum\limits_{\omega \in GF(2^{n})}^{}(-1)^{f(x)\bigoplus\omega .x} $$
    (20)

    In this regard, ω belongs to GF(2n), and x and ω are multiplied by a dot product. The non-linearity of one proposed S-box is given in Table 2.

  • Strict Avalanche Criterion To check whether a given cryptographic transformation satisfies the strict avalanche criterion (SAC), we examined our S-box (Table 1). The ideal value is 0.5 [68]. The dependence matrix of the generated S-box is presented in Tables 6 and 2.

    Table 6 The dependence matrix for the proposed S-box
  • Bit Dependent Critica Webster and Tavers introduced the bit dependent critica (BDP) to analyze the S-box [68]. In this technique, it is tried to understand whether the set of vectors produced with the switch bit of plaintext is autonomous from all avalanche variable seta or not. The ideal value for satisfying is 0.5. The test results are presented in Tables 2 and 7.

    Table 7 The BIC-SAC matrix for the proposed S-box
  • Linear Approximation Probability We could compute the masking of all inputs by considering the two masks Γx and Γy. The maximum value of masking is known as a maximum linear approximation. If we represent the input value by x and the corresponding output S(x), the linear approximation probability would be defined as:

    $$ LP=\max\limits_{{\varGamma} x,{\varGamma} y \neq 0}\vert\frac{\sharp \lbrace x\vert x.{\varGamma} x=S(x).{\varGamma} y \rbrace}{2{n}}-\frac{1}{2}\vert $$
    (21)

    The smaller the LP value, the stronger the ability to fight against linear transmission attacks, and vise versa. The results of this analysis are shown in Table 2.

  • Differential Approximation Probability

    The differential Approximation Probability (DP) is the maximum probability of y output, when the input is x, and it is used to represent the XOR distribution of input and output of the boolean function. It is given by:

    $$ DP=\max\limits_{\Delta x \neq 0,{\Delta} y}\vert\ \frac{\sharp \lbrace x \in X \vert f(x) \bigoplus f(x \bigoplus {\Delta} x)= {\Delta} y \rbrace}{2^{n}}-\frac{1}{2}\vert $$
    (22)

    The smaller the DP value, the stronger the ability to fight against linear transmission attacks. The results of the DP analysis are shown in Table 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sani, R.H., Behnia, S. & Ziaei, J. Construction of S-box based on chaotic piecewise map: Watermark application. Multimed Tools Appl 82, 1131–1148 (2023). https://doi.org/10.1007/s11042-022-13278-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13278-0

Keywords

Navigation