Skip to main content
Log in

An adaptive rejuvenation of bacterial foraging algorithm for global optimization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Bacterial foraging algorithm (BFA) is a novel nature-inspired algorithm that mimics the social foraging behavior of E. coli. Bacteria. However, it gets stuck in the local optima trap and yields poor convergence in complex landscapes. To improve the exploration-exploitation balance and achieve the global optima quickly, this paper proposes a novel hybrid called the Bacterial foraging algorithm-firefly algorithm (BFA-FA). In this work, two strategies namely adaptive strategy and leadership strategy are applied on conventional BFA. The performance is examined on standard, non-linear and CEC_2017 benchmark functions over several evaluation parameters. The results on benchmark functions show that BFA-FA provides accurate solutions, avoids local optima, works well on multimodal and multidimensional landscapes, and converges faster. It also shows the statistically significant difference among other algorithms. The proposed algorithm is applied on two classical engineering problems to validate its robustness and applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banerjee S, Chaudhuri SS (2021) Bacterial foraging-fuzzy synergism-based image dehazing. Multimed Tools Appl 80(6):8377–8421

    Article  Google Scholar 

  2. Biswas A, Dasgupta S, Das S, Abraham A (2007) Synergy of pso and bacterial foraging optimization a comparative study on numerical benchmarks. In: Innovations in hybrid intelligent systems, Springer. pp. 255–263

  3. Chen H, Zhu Y, Hu K (2008) Self-adaptation in bacterial foraging optimization algorithm. In: 2008 3rd International Conference on Intelligent System and Knowledge Engineering, IEEE. vol. 1, pp. 1026–1031

  4. Chen H, Zhu Y, Hu K (2009) Cooperative bacterial foraging algorithm for global optimization. In: 2009 Chinese control and decision conference, IEEE. pp. 3896–3901

  5. Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2020) An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine. Appl Soft Comput 86:105884

    Article  Google Scholar 

  6. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  7. Cheng R, Li M, Tian Y, Zhang X, Yang S, Jin Y, Yao X (2017) Benchmark functions for cec2017 competition on evolutionary many-objective optimization. In: Proc. IEEE Congr. Evol. Comput., pp. 1–20

  8. Chickermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Methods Eng 39(5):829–846

    Article  MathSciNet  MATH  Google Scholar 

  9. Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941

    Article  Google Scholar 

  10. Datta T, Misra I, Mangaraj B, Imtiaj S (2008) Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence. Prog Electromagn Res C 1:143–157

    Article  Google Scholar 

  11. Fuad MMM (2014) A hybrid of bacterial foraging and differential evolution-based distance of sequences. Procedia Computer Science 35:101–110

    Article  Google Scholar 

  12. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  13. Hanmandlu M, Verma OP, Kumar NK, Kulkarni M (2009) A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans Instrum Meas 58(8):2867–2879

    Article  Google Scholar 

  14. Hern’andez-Ocana B, Mezura-Montes E, Pozos-Parra P (2013) A review of the bacterial for- aging algorithm in constrained numerical optimization. In: 2013 IEEE congress on evolutionary computation, IEEE. pp. 2695–2702

  15. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, vol. 751. John Wiley & Sons

  16. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  17. Kennedy JR (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE. pp. 39–43

  18. Khodabakhshian A, Daryabeigi E, Moazzami M (2013) A new optimization approach for multi-machine power system stabilizer design using a smart bacteria foraging algorithm. Simulation 89(9):1041–1055

    Article  Google Scholar 

  19. Kim DH, Cho JH (2005) Adaptive tuning of pid controller for multivariable system using bacterial foraging based optimization. In: International Atlantic Web Intelligence Conference, Springer. pp. 231–235

  20. Kim DH, Abraham A, Cho JH (2007) A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf Sci 177(18):3918–3937

    Article  Google Scholar 

  21. Kora P, Kalva SR (2015) Hybrid bacterial foraging and particle swarm optimization for detecting bundle branch block. Springer Plus 4(1):1–19

    Article  Google Scholar 

  22. Kora P, Abraham A, Meenakshi K (2020) Heart disease detection using hybrid of bacterial foraging and particle swarm optimization. Evol Syst 11(1):15–28

    Article  Google Scholar 

  23. Kowsalya M et al (2014) Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol Comput 15:58–65

    Article  Google Scholar 

  24. Li L, Zhang F, Liu C, Niu B (2015) A hybrid artificial bee colony algorithm with bacterial foraging optimization. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), IEEE. pp. 127–132

  25. Li MW, Wang YT, Geng J, Hong WC (2021) Chaos cloud quantum bat hybrid optimization algorithm. Nonlinear Dynamics 103(1):1167–1193

    Article  Google Scholar 

  26. Liu Y, Passino K (2002) Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J Optim Theory Appl 115(3):603–628

    Article  MathSciNet  MATH  Google Scholar 

  27. Majhi R, Panda G, Majhi B, Sahoo G (2009) Efficient prediction of stock market indices using adaptive bacterial foraging optimization (abfo) and bfo based techniques. Expert Syst Appl 36(6):10097–10104

    Article  Google Scholar 

  28. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  29. Mishra S (2005) A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans Evol Comput 9(1):61–73

    Article  Google Scholar 

  30. Nasir ANK, Tokhi MO, Abd Ghani N, Ahmad MA (2012) A novel hybrid spiral-dynamics bacterial-foraging algorithm for global optimization with application to control design. In: 2012 12th UK Workshop on Computational Intelligence (UKCI), IEEE. pp. 1–7

  31. Niu B, Wang H, Wang J, Tan L (2013) Multi-objective bacterial foraging optimization. Neurocomputing 116:336–345

    Article  Google Scholar 

  32. Pal SK, Rai C, Singh AP (2012) Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems. Int J Intell Syst Appl 4(10):50

    Google Scholar 

  33. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(6):735–748

    Article  Google Scholar 

  34. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population-based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  35. Tan L, Lin F, Wang H (2015) Adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows. Neurocomputing 151:1208–1215

    Article  Google Scholar 

  36. Tang K, Xiao X, Wu J, Yang J, Luo L (2017) An improved multilevel thresholding approach based modified bacterial foraging optimization. Appl Intell 46(1):214–226

    Article  Google Scholar 

  37. Tripathy M, Mishra S, Lai LL, Zhang Q (2006) Transmission loss reduction based on facts and bacteria foraging algorithm. In: Parallel Problem Solving from Nature-PPSN IX, Springer. pp. 222–231

  38. Tsai JF (2005) Global optimization of nonlinear fractional programming problems in engineering design. Eng Optim 37(4):399–409

    Article  MathSciNet  Google Scholar 

  39. Verma OP, Parihar AS (2016) An optimal fuzzy system for edge detection in color imagesusing bacterial foraging algorithm. IEEE Trans Fuzzy Syst 25(1):114–127

    Article  Google Scholar 

  40. Verma OP, Hanmandlu M, Kumar P, Chhabra S, Jindal A (2011) A novel bacterial for- aging technique for edge detection. Pattern Recogn Lett 32(8):1187–1196

    Article  Google Scholar 

  41. Verma OP, Sharma R, Kumar D (2012) Binarization based image edge detection usingbacterial foraging algorithm. Procedia Technology 6:315–323

    Article  Google Scholar 

  42. Verma OP, Hanmandlu M, Sultania AK, Parihar AS (2013) A novel fuzzy system for edgedetection in noisy image using bacterial foraging. Multidim Syst Sign Process 24(1):181–198

    Article  MATH  Google Scholar 

  43. Wang D, Qian X, Liu K, Ban X, Guan X (2018) An adaptive distributed size wolf pack optimization algorithm using strategy of jumping for raid (september 2018). IEEE Access 6:65260–65274

    Article  Google Scholar 

  44. Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31(7):1995–2014

    Article  Google Scholar 

  45. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  46. Wu G, Mallipeddi R, Suganthan PN (2017) Problem definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report

  47. Ya-lin T (2015) Bacteria foraging optimization algorithm based on self-adaptative method. Value Engineering p. 11

  48. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press

    Google Scholar 

  49. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  50. Zhang Z, Hong WC (2021) Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads. Knowl-Based Syst 228:107297

    Article  Google Scholar 

  51. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074

    Article  Google Scholar 

  52. Zhang Q, Chen H, Luo J, Xu Y, Wu C, Li C (2018) Chaos enhanced bacterial foraging optimization for global optimization. IEEE Access 6:64905–64919

    Article  Google Scholar 

  53. Zhao W, Wang L (2016) An effective bacterial foraging optimizer for global optimization. Inf Sci 329:719–735

    Article  Google Scholar 

  54. Zhou Q, Zhou Y (2013) Wolf colony search algorithm based on leader strategy. Appl Res Comput 30(9):2629–2632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejna Khosla.

Ethics declarations

Conflict of interest

The author and co-author have no conflict of interest. This work is original and has not been published elsewhere nor it is currently under consideration for publication elsewhere.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Standard benchmark functions used are as follows:

Type of Function

Function

Dim

Range

fmin value

Unimodal benchmark functions

\( {f}_1(x)=\sum \limits_{i=1}^s{x}_i^2 \)

30

[−100,100]

0

\( {f}_2(x)=\sum \limits_{i=1}^s\left|{x}_i\right|+\prod \limits_{i=1}^s\left|{x}_i\right| \)

30

[−10,10]

0

\( {f}_3(x)=\sum \limits_{i=1}^s{\left(\sum \limits_{j=1}^i{x}_j\right)}^2 \)

30

[−100,100]

0

f4(x) = maxi{|xi|, 1 ≤ i ≤ s}

30

[−100,100]

0

\( {f}_5(x)=\sum \limits_{i=1}^s{\left(\left[{x}_i+0.5\right]\right)}^2 \)

30

[−100,100]

0

Multimodal benchmark functions

\( {f}_6(x)=\sum \limits_{i=1}^s-{x}_i\sin \left(\sqrt{\left|{x}_i\right|}\right) \)

30

[−500,500]

-418.9829 X 5

\( {f}_7(x)=\sum \limits_{i=1}^s\left[{x}_i^2-10\cos \left(2\pi {x}_i\right)+10\right] \)

30

[−5.12,5.12]

0

\( {f}_8(x)=-20\exp \left(-0.2\sqrt{\frac{1}{s}\left(\sum \limits_{i=1}^s{x}_i^2\right)}\right)-\exp \left(\frac{1}{s}\sum \limits_{i=1}^s\cos \left(2\pi {x}_i\right)\right)+20+e \)

30

[−32,32]

0

\( {f}_9(x)=\frac{\pi }{s}\left\{10\sin \left(\pi {y}_1\right)+\sum \limits_{i=1}^{s-1}{\left({y}_i-1\right)}^2\left[1+10{\mathit{\sin}}^2\left(\pi {y}_{i+1}\right)\right]+{\left({y}_s-1\right)}^2\right\}+\sum \limits_{i=1}^su\left({x}_i,\mathrm{10,100,4}\right) \)

\( {y}_i=1+\frac{x_i+1}{4} \)

\( u\left({x}_i,a,k,m\right)=\left\{\begin{array}{c}k{\left({x}_i-a\right)}^m\kern0.5em {x}_i>a\\ {}\ 0\kern1.75em -a<{x}_i<a\\ {}k{\left(-{x}_i-a\right)}^m\kern0.5em {x}_i<-a\kern1.5em \end{array}\right. \)

30

[−50,50]

0

\( {f}_{10}(x)=0.1\left\{{\mathit{\sin}}^2\left(3\pi {x}_1\right)+\sum \limits_{i=1}^s{\left({x}_i-1\right)}^2\left[1+{\mathit{\sin}}^2\left(3\pi {x}_i+1\right)\right]+{\left({x}_s-1\right)}^2\left[1+{\mathit{\sin}}^2\left(2\pi {x}_s\right)\right]\right\}+\sum \limits_{i=1}^su\left({x}_i,\mathrm{5,100,4}\right) \)

30

[−50,50]

0

\( {f}_{11}(x)=\left[{e}^{-\sum \limits_{i=1}^s{\left(\raisebox{1ex}{${x}_i$}\!\left/ \!\raisebox{-1ex}{$\beta $}\right.\right)}^{2m}}-2{e}^{-\sum \limits_{i=1}^s{x}_i^2}\right].\prod \limits_{i=1}^s{\mathit{\cos}}^2\left({x}_i\right),m=5 \)

30

[−20,20]

−1

fixed dimension multimodal benchmark function

\( {f}_{12}(x)=\left[1+{\left({x}_1+{x}_2+1\right)}^2\left(19-14{x}_1+3{x}_1^2-14{x}_2+6{x}_1{x}_2+3{x}_2^2\right)\right]\times \left[30+{\left(2{x}_1-3{x}_2\right)}^2\times \left(18-32{x}_1+12{x}_1^2+48{x}_2-36{x}_1{x}_2+27{x}_2^2\right)\right] \)

2

[−2,2]

3

CEC_2017 optimization functions are as follows:

Function Type

Function Number

Function Name

Unimodal function

C01

Shifted and Rotated Bent Cigar

C02

Shifted and Rotated Sum of Different Power

C03

Shifted and Rotated Zakharov

Simple Multimodal function

C04

Shifted and Rotated Rosenbrock

C05

Shifted and Rotated Rastrigin

C06

Shifted and Rotated Expanded Schaffer F6

C07

Shifted and Rotated Lunacek Bi-Rastrigin

C08

Shifted and Rotated Non-Continuous Rastrigin

C09

Shifted and Rotated Levy

C10

Shifted and Rotated Schwefel

Hybrid function

C11

Zakharov; Rosenbrock; Rastrigin

C12

High-conditioned Elliptic; Modified Schwefel; Bent Cigar

C13

Bent Cigar; Rosenbrock; Lunacek bi-Rastrigin

C14

High-conditioned Elliptic; Ackley; Schaffer F7; Rastrigin

C15

Bent Cigar; HGBat; Rastrigin; Rosenbrock

C16

Expanded Schaffer F6; HGBat; Rosenbrock; Modified Schwefel

C17

Katsuura; Ackley; Expanded Griewank plus Rosenbrock; Schwefel; Rastrigin

C18

High-conditioned Elliptic; Ackley; Rastrigin; HGBat; Discus

C19

Bent Cigar; Rastrigin; Griewank plus Rosenbrock; Weierstrass; Expanded Schaffer F6

C20

HappyCat; Katsuura; Ackley; Rastrigin; Modified Schwefel; Schaffer F7

Composite functions

C21

Rosenbrock; High-conditioned Elliptic; Rastrigin

C22

Rastrigin; Griewank; Modified Schwefel

C23

Rosenbrock; Ackley; Modified Schwefel; Rastrigin

C24

Ackley; High-conditioned Elliptic; Griewank; Rastrigin

C25

Rastrigin; HappyCat; Ackley; Discus; Rosenbrock

C26

Expanded Schaffer F6; Modified Schwefel; Griewank; Rosenbrock; Rastrigin

C27

HGBat; Rastrigin; Modified Schwefel; Bent Cigar; High-conditioned Elliptic; Expanded Schaffer F6

C28

8 Ackley; Griewank; Discus; Rosenbrock; HappyCat; Expanded Schaffer F6

Noisy non-linear functions used are as follows:

Type of Function

Function

Four Peak Function

\( NL1\left(x,y\right)={e}^{-{\left(x-4\right)}^2-{\left(y-4\right)}^2}+{e}^{-{\left(x+4\right)}^2-{\left(y-4\right)}^2}+2\left[{e}^{-{x}^2-{y}^2}+{e}^{-{x}^2-{\left(y+4\right)}^2}\right] \)

Parabolic Function

\( NL2\left(x,y\right)=12-\raisebox{1ex}{$\left({x}^2+{y}^2\right)$}\!\left/ \!\raisebox{-1ex}{$100$}\right. \)

Camelback Function

\( NL3\left(x,y\right)=10-\log \left({x}^2-\left(4-2.1{x}^2+\left(\frac{1}{3}\right){x}^4\right)\right)+ xy+4{y}^2\left({y}^2-1\right) \)

Styblinski Function

\( NL4\left(x,y\right)=275-\left[\left(\frac{x^4-16{x}^2+5x}{2}\right)+\left(\frac{y^4-16{y}^2+5y}{2}\right)+3\right] \)

Goldstein-Price Function

\( NL5\left(x,y\right)=10+\log \left[\frac{1}{\left\{\left(1+{\left(1+x+y\right)}^2\left(19-14x+3{x}^2-14y+6 xy+3{y}^2\right)\right)\right\}}\ast \frac{1}{\left(30+{\left(2x-3y\right)}^2\left(18-32x+12{x}^2+48y-36 xy+27{y}^2\right)\right)}\right] \)

Rosenbrock Function

\( NL6\left(x,y\right)=70\left[\frac{\left[\left[20-\left\{{\left(1-\frac{x}{-7}\right)}^2+{\left(\left(\frac{y}{6}\right)+{\left(\frac{x}{-7}\right)}^2\right)}^2\right\}\right]+150\right]}{170}\right]+10 \)

Rastrigin Function

NL7(x, y) = 80 − [20 + x2 + y2 − 10(cos(2πx) + cos(2πy))]

Single peak and multi peak functions used are as follows:

Type of Function

Function name

Function

Range

Fitness Value

Single Peak

Needle-in-haystack

\( SP1\left(x,y\right)={\left(\frac{3}{0.05+{x}^2+{y}^2}\right)}^2+{\left({x}^2+{y}^2\right)}^2 \)

x, (5, −5)

3600

Single Peak

Branin

\( SP2\left(x,y\right)=a{\left({x}_2-b{x}_1^2+c{x}_1-r\right)}^2+s\left(1-t\right)\cos \left({x}_1\right)+s \)

\( {x}_1\epsilon \left[-5,10\right],{x}_2\epsilon \left[0,15\right],a=1,b=\frac{5.1}{\left(4{\pi}^2\right)},c=\frac{5}{\pi },r=6,s=10,t=\frac{1}{8\pi } \)

0.397887

Multi peak

Extended Beale

\( MP3\left(x,y\right)=\sum \limits_{i=1}^{\raisebox{1ex}{$n$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}{\left(1.5-{x}_{2i}-\left(1-{x}_{2i}\right)\right)}^2+{\left(2.25-{x}_{2i-1}\left(1-{x}_{2i}^2\right)\right)}^2 \)

[−4.5,4.5]

f(x∗) = 0, x ∗  = (3,0.5, …, 3,0.5)

Multi peak

Griewank

\( MP4\left(x,y\right)=\frac{1}{4000}\sum \limits_{i=1}^n{x}_i^2-\prod \limits_{i=1}^n\mathit{\cos}\left|\frac{x_i}{\sqrt{i}}\right|+1 \)

(300, −300)

f(x∗) = 0, x ∗  = (0, …, 0)

Multi peak

MCCORMICK

\( MP5\left(x,y\right)=\sum \limits_{i=1}^{n-1}\left(\left(-1.5{x}_i+2.5{x}_{i+1}+1+{\left({x}_{i+1}+{x}_i\right)}^2\right)+\sin \left({x}_{i+1}+{x}_i\right)\right) \)

x0 = [1, 1, …, 1]

f(x∗) =  − 1.9133, x ∗  = (−0.54719, −1.54719, …, −0.54719, −1.54719)

Multi peak

Drop-Wave

\( MP6\left(x,y\right)=\frac{1+\cos \left(12\sqrt{x_1^2+{x}_2^2}\right)}{0.5\left({x}_1^2+{x}_2^2\right)+2} \)

[−5.12,5.12]

f(x∗) =  − 1, x ∗  = (0, …, 0)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosla, T., Verma, O.P. An adaptive rejuvenation of bacterial foraging algorithm for global optimization. Multimed Tools Appl 82, 1965–1993 (2023). https://doi.org/10.1007/s11042-022-13313-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13313-0

Keywords

Navigation