Skip to main content
Log in

A fault-tolerant image processor for executing the morphology operations based on a nanoscale technology

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The morphology algorithms are an exciting field that provides a powerful and unified method applied to image and video processing applications. Also, they have many advantages to give manageable hardware implementations and are widely employed as parts of image processing techniques. On the other hand, Quantum-dot Cellular Automata (QCA) is a promising and novel nanotechnology that contains notable benefits against common technologies in diverse features like extremely small size, low energy loss, and high operation frequency. Besides, schematizing circuits with no info loss or fault-tolerant might be beneficial in reducing power wastage. In the present paper, we suggest a novel fault-tolerant procedure to execute the morphology operations in digital image processing based on QCA. The mentioned fault-tolerant schematization for executing the morphology operations in digital image processing is easy to build. It contains notably lower elements than Complementary Metal Oxide Semiconductor (CMOS) design. Implementation and testing of all circuits are achieved using the QCADesigner tool. The suggested fault-tolerant circuit for morphological dilation/erosion operation attains high fault-tolerant in all cases of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are reported in the paper.

References

  1. Ahmadpour S-S, Mosleh M, Rasouli Heikalabad S (2022) Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis. J Supercomput 78(2):1672–1695. https://doi.org/10.1007/s11227-021-03913-2

    Article  Google Scholar 

  2. Bhoi BK, Neeraj KM, Ipsita D, Sonali P, Ankita P (2019) Design of median filter in quantum-dot cellular automata for image processing applications. Adv Appl Math Sci 18(9): 893–900.

  3. Chabi AM, Sayedsalehi S, Angizi S, Navi K (2014) Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int Sch Res Notices 2014:19

    Article  Google Scholar 

  4. Chen H, Miao Y, Chen Y, Fang L, Zeng L, Shi J (2021) Intelligent model-based integrity assessment of nonstationary mechanical system. J Web Eng 253–280

  5. Cho H, Swartzlander EE (2007) Adder designs and analyses for quantum-dot cellular automata. IEEE Trans Nanotechnol 6(3):374–383

    Article  Google Scholar 

  6. Das JC, De DJIQC (2020) Reversible priority encoder design and implementation using quantum-dot cellular automata. 1(2):72–78

  7. Gin A, Tougaw PD, Williams S (1999) An alternative geometry for quantum-dot cellular automata. J Appl Phys 85(12):8281–8286

    Article  Google Scholar 

  8. Hasani B, Navimipour NJ (2021) A new Design of a Carry-Save Adder Based on quantum-dot cellular automata. Iran J Sci Technol Trans Electr Eng 45:1–7

    Article  Google Scholar 

  9. Kim C (2005) Segmenting a low-depth-of-field image using morphological filters and region merging. IEEE Trans Image Process 14(10):1503–1511

    Article  Google Scholar 

  10. Kumar D, Mitra D (2016) Design of a practical fault-tolerant adder in QCA. Microelectron J 53:90–104

    Article  Google Scholar 

  11. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557

    Article  Google Scholar 

  12. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57

    Article  Google Scholar 

  13. Li B, Yang J, Yang Y, Li C, Zhang Y (2021) Sign language/gesture recognition based on cumulative distribution density features using UWB radar. IEEE Trans Instrum Meas 70:1–13

    Google Scholar 

  14. Liu H, Jianyong L, Shudong H, Tao T,  Jungong H (2021) Perception consistency ultrasound image super-resolution via self-supervised CycleGAN. Neural Comput Appl 1–11

  15. Liu R, Wang X, Lu H, Wu Z, Fan Q, Li S, Jin X (2021b) SCCGAN: style and characters inpainting based on CGAN. Mob Netw Appl 26(1):3–12

    Article  Google Scholar 

  16. Liu Y, Zelin Z, Xiang L, Lei W, Xuhui X (2021) Efficient image segmentation based on deep learning for mineral image classification. Adv Powder Technol 32(10):3885–3903

  17. Liu Y, Zhang Z, Liu X, Wang L, Xia X (2021d) Ore image classification based on small deep learning model: evaluation and optimization of model depth, model structure and data size. Miner Eng 172:107020

    Article  Google Scholar 

  18. Liu Y, Tian J, Hu R, Yang B, Liu S, Yin L, Zheng W (2022a) Improved Feature Point Pair Purification Algorithm Based on SIFT During Endoscope Image Stitching. Front Neurorobot 16

  19. Liu Z, Fang L, Jiang D, Qu R (2022b) A machine-learning based fault diagnosis method with adaptive secondary sampling for multiphase drive systems. IEEE Trans Power Electron 37:8767–8772

    Article  Google Scholar 

  20. Lv Z, Jinkang G, Lv H (2022) Safety poka yoke in zero-defect manufacturing based on digital twins. IEEE transactions on industrial informatics

  21. Majeed AH, Alkaldy E, Zainal MS, Navi K, Nor D (2019) Optimal design of RAM cell using novel 2: 1 multiplexer in QCA technology. Circuit World 46:147–158

    Article  Google Scholar 

  22. Mardiris V, Vassilios C (2014) Image processing algorithms implementation using quantum cellular automata. In Cellular Automata in Image Processing and Geometry. Springer, Cham pp. 65–84

  23. Mardiris V, Vassilios C (2016) A configurable design for morphological erosion and dilation operations in image processing using quantum-dot cellular automata. J Eng Sci Technol 9(2):25–30

  24. Meng F, Shuaisong Y, Jingdong W, Lei X, Han L (2022) Creating knowledge graph of electric power equipment faults based on BERT–BiLSTM–CRF model. J Electr Eng Technol 1–10

  25. Meyer F, Beucher S (1990) Morphological segmentation. J Vis Commun Image Represent 1(1):21–46

    Article  Google Scholar 

  26. Nejad MY, Mosleh M, Heikalabad SR (2020) An enhanced LSB-based quantum audio watermarking scheme for nano communication networks. Multimed Tools Appl 79(35):26489–26515

    Article  Google Scholar 

  27. Panagiotopoulos FK, Mardiris VA, Chatzis V (2012). Quantum–dot cellular automata design for median filtering and mathematical morphology operations on binary images. Paper presented at the International Conference on Cellular Automata

  28. Pesaresi M, Benediktsson JA (2001) A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 39(2):309–320

    Article  Google Scholar 

  29. Ramji D, Palagan CA, Nithya A, Appathurai A, Alex EJ (2020) Soft computing based color image demosaicing for medical image processing. Multimed Tools Appl 79(15):10047–10063

    Article  Google Scholar 

  30. Sen B, Dutta M, Goswami M, Sikdar BK (2014) Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron J 45(11):1522–1532

    Article  Google Scholar 

  31. Seyedi S, Nima JN(2018) An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158: 243–256.

  32. Seyedi S, Jafari Navimipour N (2022) Designing a multi-layer full-adder using a new three-input majority gate based on quantum computing. Concurr Comput Pract Exper 34(4):e6653

    Article  Google Scholar 

  33. Seyedi S, Navimipour NJ (2018) Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun Networks 16:1–9

    Article  Google Scholar 

  34. Seyedi S, Navimipour NJ (2021a) Designing a new 4: 2 compressor using an efficient multi-layer full-adder based on nanoscale quantum-dot cellular automata. Int J Theor Phys 60:2613–2626

  35. Seyedi S, Nima JN (2021) A fault-tolerance nanoscale design for binary-to-gray converter based on QCA. IETE J Res 1–8

  36. Seyedi S, Navimipour NJ (2022) An efficient structure for designing a nano-scale fault-tolerant 2: 1 multiplexer based on quantum-dot cellular automata. Optik 251:168409

    Article  Google Scholar 

  37. Seyedi S, Navimipour NJ, Otsuki A (2021a) Design and analysis of fault-tolerant 1: 2 Demultiplexer using quantum-dot cellular automata Nano-Technology. Electronics 10(21):2565

  38. Seyedi S, Otsuki A, Navimipour NJ (2021b) A new cost-efficient design of a reversible gate based on a nano-scale quantum-dot cellular automata technology. Electronics 10(15):1806

    Article  Google Scholar 

  39. Singh R, Sharma DK (2020) Design of efficient multilayer RAM cell in QCA framework. Circuit World 47:31–41

    Article  Google Scholar 

  40. Soille P (1999) Morphological image analysis: principles and applications. Vol. 2, no. 3. Berlin, Springer

  41. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  42. Tripathi SB, Aron N, Rahul T, Mrinal G, Bibhash S. (2018) Designing efficient configurable QCA nano circuit for morphological operations in image processing. J Phys Conf Ser 1039(1):012028. IOP Publishing

  43. Vankamamidi V, Marco O, Fabrizio L (2006) Clocking and cell placement for QCA. In 2006 Sixth IEEE Conference on Nanotechnology. IEEE 1:343–346

  44. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31

    Article  Google Scholar 

  45. Wang L, Ran Q, Ma J (2020) Double quantum color images encryption scheme based on DQRCI. Multimed Tools Appl 79(9):6661–6687

    Article  Google Scholar 

  46. Xingjun L, Zhiwei S, Hongping C, Haghighi MRJ (2020) A new design of QCA-based nanoscale multiplexer and its usage in communications. Int J Commun Syst 33(4):e4254

    Article  Google Scholar 

  47. Xu J, Wu Z, Chen H, Shao L, Zhou X, Wang S (2021) Study on strength behavior of basalt fiber-reinforced loess by digital image technology (DIT) and scanning electron microscope (SEM). Arab J Sci Eng 46(11):11319–11338

    Article  Google Scholar 

  48. Ye Y, Jiao B, Kong Y, Liu R, Du X, Jia K, … Chen D (2022) Experimental investigations on the thermal superposition effect of multiple hotspots for embedded microfluidic cooling. Appl Therm Eng 202:117849

    Article  Google Scholar 

  49. Zhang N, Jiao B, Ye Y, Kong Y, Du X, Liu R, … Jia K (2022a) Embedded cooling method with configurability and replaceability for multi-chip electronic devices. Energy Convers Manag 253:115124

    Article  Google Scholar 

  50. Zhang Z, Wang L, Zheng W, Yin L, Hu R, Yang B (2022b) Endoscope image mosaic based on pyramid ORB. Biomed Signal Process Control 71:103261

    Article  Google Scholar 

  51. Zheng W, Liu X, Yin L (2021) Research on image classification method based on improved multi-scale relational network. PeerJ Comput Sci 7:e613

    Article  Google Scholar 

  52. Zhou W, Yu L, Zhou Y, Qiu W, Wu M-W, Luo T (2018) Local and global feature learning for blind quality evaluation of screen content and natural scene images. IEEE Trans Image Process 27(5):2086–2095

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhou W, Liu J, Lei J, Yu L, Hwang J-N (2021) GMNet: graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation. IEEE Trans Image Process 30:7790–7802

    Article  Google Scholar 

  54. Zuo C, Qian J, Feng S, Yin W, Li Y, Fan P, Han J, Qian K, Chen Q (2022) Deep learning in optical metrology: a review. Light Sci Appl 11(1):1–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedi, S., Navimipour, N.J. A fault-tolerant image processor for executing the morphology operations based on a nanoscale technology. Multimed Tools Appl 82, 2489–2502 (2023). https://doi.org/10.1007/s11042-022-13330-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13330-z

Keywords

Navigation