Skip to main content
Log in

Retinex low-light image enhancement network based on attention mechanism

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Images taken at night, under cloudy conditions, etc., are degraded and of poor quality, which can cause problems such as low brightness, excessive noise, and loss of information. In recent years, deep learning-based methods have led to a significant breakthrough in the challenging task of processing the enhancement of low-light images. We propose a new attention-based network incorporating Retinex theory for the enhancement of low-light images. First, the method in this paper requires pairs of low-/normal-light images for training, and the respective illumination and reflectance maps are decomposed by the first part of the designed network according to the commonality of both. Secondly, an attention mechanism module is inserted in the convolutional layer in the second part of the network, to adaptively adjust the luminance information of the illumination and to preserve the consistency of the image structure. Finally, the new illumination map estimated in the second part is combined with the previous reflectance map to obtain the final enhanced image. The experimental results show that the method achieves better results both quantitatively and qualitatively, with obvious luminance enhancement, less noise, better color reproduction, clearer texture information, and overall superiority compared to existing advanced methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Nawashi M, Al-Hazaimeh OM, Saraee M (2017) A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments. Neural Comput Applic 28(1):565–572

    Article  Google Scholar 

  2. Alsmirat MA, Al-Alem F, Al-Ayyoub M, Jararweh Y, Gupta B (2019) Impact of digital fingerprint image quality on the fingerprint recognition accuracy. Multimed Tools Appl 78(3):3649–3688

    Article  Google Scholar 

  3. Atawneh S, Almomani A, Al Bazar H, Sumari P, Gupta B (2017) Secure and imperceptible digital image steganographic algorithm based on diamond encoding in DWT domain. Multimed Tools Appl 76(18):18451–18472

    Article  Google Scholar 

  4. Banerjee S, Chaudhuri S (2020) Nighttime image-dehazing: a review and quantitative benchmarking. Arch Comput Methods Eng:1–33

  5. Cai B, Xu X, Guo K, Jia K, Hu B, Tao D (2017) A joint intrinsic-extrinsic prior model for retinex. In: IEEE International conference on computer vision (ICCV), pp 4020–4029. IEEE computer society

  6. Du J, He Z, Wang L, Gholipour A, Zhou Z, Chen D, Jia Y (2020) Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network. Neurocomputing 392:209–220

    Article  Google Scholar 

  7. Esposito C, Ficco M, Gupta BB (2021) Blockchain-based authentication and authorization for smart city applications. Inf Process Manage 58(2):102468

    Article  Google Scholar 

  8. Fu G, Duan L, Xiao C (2019) A hybrid l2-LP variational model for single Low-Light image enhancement with bright channel prior. In: 2019 IEEE International conference on image processing (ICIP). pp 1925–1929

  9. Fu X, Zeng D, Huang Y, Zhang XS, Ding X (2016) A weighted variational model for simultaneous reflectance and illumination estimation. In: 2016 IEEE Conference on computer vision and pattern recognition, CVPR, pp 2782–2790. IEEE Computer Society

  10. Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D (2015) DRAW: A recurrent neural network for image generation. In: Proceedings of the 32nd international conference on machine learning, ICML, vol 37. pp 1462–1471. JMLR.org

  11. Guo C, Li C, Guo J, Loy CC, Hou J, Kwong S, Cong R (2020) Zero-reference Deep curve estimation for Low-Light image enhancement. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1780–1789

  12. Guo C, Li C, Guo J, Loy CC, Hou J, Kwong S, Cong R (2020) Zero-Reference Deep curve estimation for Low-Light image enhancement. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1780–1789

  13. Guo X, Li Y, Ling H (2017) LIME: Low-Light image enhancement via illumination map estimation. IEEE Transon Image Process 26(2):982–993

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang O, Long W, Bottenus N, Lerendegui M, Trahey GE, Farsiu S, Palmeri ML (2020) Mimicknet, mimicking clinical image post-processing under black-box constraints. IEEE Trans Med Imaging 39(6):2277–2286

    Article  Google Scholar 

  15. Jiang Y, Gong X, Liu D, Cheng Y, Fang C, Shen X, Yang J, Zhou P, Wang Z (2021) EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans Image Process 30:2340–2349

    Article  Google Scholar 

  16. Land EH, McCann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61(1):1–11

    Article  Google Scholar 

  17. Lee H, Sohn K, Min D (2020) Unsupervised low-light image enhancement using bright channel prior. IEEE Signal Process Lett 27:251–255

    Article  Google Scholar 

  18. Li D, Deng L, Gupta BB, Wang H, Choi C (2019) A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf Sci 479:432–447

    Article  Google Scholar 

  19. Li J, Feng X, Fan H (2020) Saliency-based image correction for colorblind patients. Comput Vis Med 6(2):169–189

    Article  Google Scholar 

  20. Li J, Feng X, Hua Z (2021) Low-Light image enhancement via progressive-recursive network. IEEE Trans Circuits Syst Video Technol 31 (11):4227–4240

    Article  Google Scholar 

  21. Li C, Guo J, Porikli F, Pang Y (2018) Lightennet: a convolutional neural network for weakly illuminated image enhancement. Pattern Recogn Lett 104:15–22

    Article  Google Scholar 

  22. Li J, Li G, Fan H (2018) Image dehazing using residual-based deep CNN. IEEE Access 6:26831–26842

    Article  Google Scholar 

  23. Liming T, Honglu Z, Chuanjiang H, Zhuang F (2019) Non-convex and non-smooth variational decomposition for image restoration. Appl Math Model 69:355–377

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu D, Wen B, Jiao J, Liu X, Wang Z, Huang TS (2020) Connecting image denoising and high-level vision tasks via deep learning. IEEE Trans Image Process 29:3695–3706

    Article  MATH  Google Scholar 

  25. Lore KG, Akintayo A, Sarkar S (2017) LLNEt: A deep autoencoder approach to natural low-light image enhancement. Pattern Recogn 61:650–662

    Article  Google Scholar 

  26. Mnih V, Heess N, Graves A, Kavukcuoglu K (2014) Recurrent models of visual attention. In: Advances in neural information processing systems 27: Annual conference on neural information processing systems, pp 2204–2212

  27. Opschoor JAA, Petersen PC, Schwab C (2020) Deep reLU networks and high-order finite element methods. Anal Appl 18(5):715–770

    Article  MathSciNet  MATH  Google Scholar 

  28. Pan Y, He F, Yu H (2019) A novel enhanced collaborative autoencoder with knowledge distillation for top-N recommender systems. Neurocomputing 332:137–148

    Article  Google Scholar 

  29. Pan Y, He F, Yu H (2020) Learning social representations with deep autoencoder for recommender system. World Wide Web 23(4):2259–2279

    Article  Google Scholar 

  30. Pan Y, He F, Yu H (2020) A correlative denoising autoencoder to model social influence for top-N recommender system. Front Comput Sci 14(3):143301

    Article  Google Scholar 

  31. Park S, Yu S, Kim M, Park K, Paik J (2018) Dual autoencoder network for retinex-based low-light image enhancement. IEEE Access 6:22084–22093

    Article  Google Scholar 

  32. Park S, Yu S, Moon B, Ko S, Paik J (2017) Low-light image enhancement using variational optimization-based retinex model. IEEE Trans Consum Electron 63(2):178–184

    Article  Google Scholar 

  33. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Lmage Process 39(3):355–368

    Article  Google Scholar 

  34. Popel M, Tomkova M, Tomek J, Kaiser L, Uszkoreit J, Bojar O, Zabokrtsky Z (2020) Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals. Nature communications 11(1):1–15

    Article  Google Scholar 

  35. Rasti B, Ghamisi P (2020) Remote sensing image classification using subspace sensor fusion. Inf Fusion 64:121–130

    Article  Google Scholar 

  36. Ren X, Li M, Cheng W, Liu J (2018) Joint enhancement and denoising method via sequential decomposition. In: IEEE International symposium on circuits and systems, ISCAS, pp 1–5, IEEE

  37. Ren WQ, Liu SF, Ma L, Xu QQ, Xu XY, Cao XC, Du JP, Yang MH (2019) Low-light image enhancement via a deep hybrid network. IEEE Trans Image Process 28(9):4364–4375

    Article  MathSciNet  MATH  Google Scholar 

  38. Singh P, Mukundan R, De Ryke R (2019) Feature enhancement in medical ultrasound videos using contrast-limited adaptive histogram equalization. J Digit Imaging 33(1):273–285

    Article  Google Scholar 

  39. Talaulikar Abhijeet S, Sanathanan S, Modi CN (2019) An enhanced approach for detecting helmet on motorcyclists using image processing and machine learning techniques, pp 109–119, Advanced Computing and Communication Technologies

  40. Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin CW (2020) Deep learning on image denoising: an overview. Neural Netw 131:251–275

    Article  MATH  Google Scholar 

  41. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems 30: Annual conference on neural information processing systems, pp 5998–6008

  42. Wang H, Li Z, Li Y, Gupta BB, Choi C (2020) Visual saliency guided complex image retrieval. Pattern Recogn Lett 130(SI):64–72

    Article  Google Scholar 

  43. Wang R, Zhang Q, Fu CW, Shen X, Zheng WS, Jia J (2019) Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6849–6857 Computer Vision Foundation / IEEE

  44. Wei C, Wang W, Yang W, Liu J (2018)

  45. Xu J, Hou Y, Ren D, Liu L, Zhu F, Yu M, Shao L (2020) STAR: A structure and texture aware retinex model. IEEE Trans Image Process 29:5022–5037

    Article  MATH  Google Scholar 

  46. Yu C, Li J, Li X, Ren X, Gupta BB (2018) Four-image encryption scheme based on quaternion fresnel transform, chaos and computer generated hologram. Multimed Tools Appl 77(4):4585–4608

    Article  Google Scholar 

  47. Zhang Y, Di X, Zhang B, Wang C (2020) Self-supervised image enhancement network: Training with Low Light images only, arXiv:2002

  48. Zhang H, Goodfellow IJ, Metaxas DN, Odena A (2019) Self-attention generative adversarial networks. In: Proceedings of the 36th international conference on machine learning, ICML, Proceedings of Machine Learning Research, vol 97. pp 7354–7363, PMLR

  49. Zhang S, He F (2020) DRCDN: Learning deep residual convolutional dehazing networks. Vis Comput 36(9):1797–1808

    Article  Google Scholar 

  50. Zhang T, Li J, Fan H (2022) Progressive edge-sensing dynamic scene deblurring. Comput. Vis. Media 8(3):495–508

    Article  Google Scholar 

  51. Zhang Y, Zhang J, Guo X (2019) Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM international conference on multimedia, pp 1632–1640, ACM

  52. Zimmerman JB, Pizer SM, Staab EV, Perry JR, McCartney W, Brenton BC (1988) An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans Med Imaging 7(4):304–312

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Grant nos. 61772319, 62002200, 61972235, and 12001327), and Shandong Natural Science Foundation of China (Grant no. ZR2020QF012 and ZR2021MF068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjiang Li.

Ethics declarations

Conflict of Interests

All authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, J. & Hua, Z. Retinex low-light image enhancement network based on attention mechanism. Multimed Tools Appl 82, 4235–4255 (2023). https://doi.org/10.1007/s11042-022-13411-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13411-z

Keywords

Navigation