Abstract
Medical imaging is an exponentially growing field, which consists of a set of tools and techniques used to extract useful information from medical images. Magnetic Resonance Imaging (MRI) is one of the most popular techniques among image modalities. This paper develops a linear model for classifying MRI images into the tumor and non-tumor categories. The proposed algorithm supports automatic extraction of features from brain MRI images, and focuses on extracting grey matter and white matter, so that the unhealthy MRI images can be isolated from the healthy MRI images. This technique takes advantage of preprocessing strategies and various filters for viable extraction and for classifying the brain MRI images. The samples of MRI images are taken from the BRAINIX and Neuroimaging data sources. The results are validated by applying the mathematical equations on 46 patients categorizing into 24 subjects as healthy and the remaining 22 as unhealthy. The novelty lies in formulating a general equation for both groups, which can be further used as a tool in computer-assisted medical systems for classifying patients.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig19_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig20_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig21_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig22_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig23_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig24_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig25_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-022-13505-8/MediaObjects/11042_2022_13505_Fig26_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agrawal D, Minocha S, Namasudra S, Kumar S (2021) IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), IEEE, Timisoara, Romania, pp 199–204
Ajai ASR, Gopalan S (2020) Analysis of active contours without edge-based segmentation technique for brain tumor classification using SVM and KNN classifiers. In: Jayakumari J, Karagiannidis GK, Ma M, Hossainpp SA (eds) Advances in Communication Systems and Networks. Springer, Berlin, pp 1–10
Alguliyev RM et al (2020) Efficient algorithm for big data clustering on single machine. CAAI Trans Intell Technol 5(1):9–14
Ali HM et al (2021) Planning a secure and reliable IoT-enabled FOG-assisted computing infrastructure for healthcare. Cluster Comput. https://doi.org/10.1007/s10586-021-03389-y
Ashraf R et al (2020) Deep convolution neural network for big data medical image classification. IEEE Access 8:105659–105670
Bansal A, Bhatia M, Yadav D (2016) Survey and comparative study on statistical tools for medical images. Adv Sci Lett 21(1):74–77
Bhatia S (2020) A comparative study of opinion summarization techniques. IEEE Trans Social Comput Syst 1–8. https://doi.org/10.1109/TCSS.2020.3033810
Bhatia M, Bansal A, Yadav D, Gupta P (2015) A proposed stratification approach for MRI images. Indian J Sci Technol 8(22):1–12
Chakraborty R, Verma G, Namasudra S (2021) IFODPSO-based multi-level image segmentation scheme aided with Masi entropy. J Ambient Intell Humaniz Comput 12:7793–7811. https://doi.org/10.1007/s12652-020-02506-w
Chithra PL, Dheepa G (2018) An analysis of segmenting and classifying tumor regions in MRI images using CNN. Int J Pure Appl Math 118(2):1–12. https://acadpubl.eu/hub/2018-118-24/1/77.pdf
Chithra PL, Dheepa G (2020)Di-phase midway convolution and deconvolution network for brain tumor segmentation in MRI images. Int J Imaging Syst Technol 30(3):674–686
Conturo TE et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci 96(18):10422–10427
Dev K, Khowaja SA, Bist AS, Saini V, Bhatia S (2020) Triage of potential COVID-19 patients from chest X-ray images using hierarchical convolutional networks. arXiv:2011.00618
Dhanith PRJ, Surendiran B, Raja SP (2021) A word embedding based approach for focused web crawling using the recurrent neural network. Int J Interact Multimed Artif Intell 6(6):122–132
Fong SJ, Li G, Dey N, Crespo RG, Fong SJ, Viedma EH (2020) Finding an accurate early forecasting model from small dataset: A case of 2019-ncov novel coronavirus outbreak. Int J Interact Multimed Artif Intell 6(1):132–140
Gregg C et al (1992) Segmentation techniques for the classification of brain tissue using magnetic resonance imaging. Psychiatry Res: Neuroimaging 45(1):33–51
Hashemi RH, Bradley WG, Lisanti CJ (2010) MRI: The basics. Lippincott Williams & Wilkins, Philadelphia
He J et al. Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. https://doi.org/10.1101/2020.09.19.304758
Hua L, Gu Y, Gu X, Xue J, Ni T (2021) A novel brain MRI image segmentation method using an improved multi-view fuzzy c-means clustering algorithm. Front NeuroSci. https://doi.org/10.3389/fnins.2021.662674
Jiang J, Schmajuk N, Egner T (2012) Explaining neural signals in human visual cortex with an associative learning model. Behav Neurosci 126(4):575–581
Kasihmuddin MSBM, Mansor MAB, Alzaeemi SA, Sathasivam S (2021) Satisfiability logic analysis via radial basis function neural network with artificial bee colony algorithm. Int J Interact Multimed Artif Intell 6(6):164–173
Kennedy DN, Haselgrove C, Riehl J, Preuss N, Buccigrossi R (2016) The NITRC image repository. Neuroimage. https://doi.org/10.1016/j.neuroimage.2015.05.074
Kumar PM et al (2021) Clouds proportionate medical data stream analytics for internet of things-based healthcare systems. IEEE J Biomed Health Inf. https://doi.org/10.1109/JBHI.2021.3106387
Leemput KV, Maes F, Vandermeulen D, Suetens P (2003) A unifying framework for partial volume segmentation of brain MR images. IEEE Trans Med Imaging 22(1):105–119
Li S, Wang G, Yang J (2019) Survey on cloud model based similarity measure of uncertain concepts. CAAI Trans Intell Technol 4(4):223–230
Liu J et al (2014) A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol 19(6):578–595
Mihaylova A, Georgieva V, Petrov P (2020) Multistage approach for automatic spleen segmentation in MRI sequences. Int J Reasoning-Based Intell Syst 12(2):128–137
Miller AKH, Alston RL, Corsellis JAN (1980) Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropathol Appl Neurobiol 6(2):119–132
Namasudra S (2020) Fast and secure data accessing by using DNA computing for the cloud environment. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2020.3046471
Namasudra S, Roy P, Vijayakumar P, Audithan S, Balamurugan B (2017) Time efficient secure DNA based access control model for cloud computing environment. Futur Gener Comput Syst 73:90–105
Namasudra S, Deka GC, Bali R (2018) Applications and future trends of DNA computing. In: Namasudra S, Deka GC (eds) Advances of DNA Computing in Cryptography. Taylor & Francis, pp 181–192
Namasudra S, Chakraborty R, Majumder A, Moparthi NR (2020) Securing multimedia by using DNA based encryption in the cloud computing environment. ACM Trans Multimed Comput Commun Appl 16(3s). https://doi.org/10.1145/3392665
Hamzenejad A, Ghoushchi SJ, Baradaran V (2021) Clustering of brain tumor based on analysis of MRI images using Robust Principal Component Analysis (ROBPCA) algorithm. BioMed Res Int. https://doi.org/10.1155/2021/5516819
Namasudra S, Dhamodharavadhani S, Rathipriya R (2021) Nonlinear neural network based forecasting model for predicting COVID-19 cases. Neural Process Lett. https://doi.org/10.1007/s11063-021-10495-w
Nikam PB, Shinde VD (2013) "MRI brain image classification and detection using distance classifier method in image processing" Int J Eng Res Technol 2(6):1980–1985
Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337
Prastawa M, Bullitt E, Gerig GA (2004) Brain tumor segmentation framework based on outlier detectio. J Med Image Anal 8(3):275–283
Ratan R, Sharma S, Sharma SK (2009) Brain tumor detection based on multi-parameter MRI image analysis. ICGST-GVIP J 9(3):9–16
Raut HT et al (2021) Enhanced bat algorithm for COVID-19 short-term forecasting using optimized LSTM. Soft Comput. https://doi.org/10.1007/s00500-021-06075-8
Schalk G, Mellinger J (2010) A practical guide to brain–computer interfacing with BCI2000: General-purpose software for brain-computer interface research, data acquisition, stimulus presentation, and brain monitoring. Springer Science & Business Media, Springer, Berlin
Sharif MI, Li JP, Khan MA, Saleem MA (2020) "Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images”. Pattern Recognit Lett 129:181–189
Sharma M, Miglani N (2020) Automated brain tumor segmentation in MRI images using deep learning: overview, challenges and future. In: Dash S, Acharya BR, Mittal M, Abraham A, Kelemen A (eds) Deep Learning Techniques for Biomedical and Health Informatics. Springer, Berlin, pp 347–383
Singh AK, Singla R (2020) Different approaches of classification of brain tumor in MRI using gabor filters for feature extraction. In: Pant M, Sharma TK, Verma OP, Singla R, Sikander A (eds) Soft Computing: Theories and Applications. Springer, Berlin, pp 1175–1188
Warfield S et al (1995) Laboratory investigation: Automatic identification of Gray Matter Structures from MRI to improve the Segmentation of White Matter Lesions. Comput Aided Surg 1(6):326–338
Winkler AM et al (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3):1135–1146
Yildirim M (2019) Adapting Laplacian based filtering in digital image processing to a retina-inspired analog image processing circuit. Analog Integr Circuits Signal Process 100(3):537–545
Zhao X, Li R, Zuo X (2019) Advances on QoS-aware web service selection and composition with nature-inspired computing. CAAI Trans Intell Technol 4(3):159–174
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bhatia, M., Bhatia, S., Hooda, M. et al. Analyzing and classifying MRI images using robust mathematical modeling. Multimed Tools Appl 81, 37519–37540 (2022). https://doi.org/10.1007/s11042-022-13505-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-022-13505-8