Skip to main content
Log in

Ensuring security of cryptosystems with DVFM-, modified equal modulus decomposition in the domain of gyrator wavelet transform

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper analyses the security of a nonlinear optical cryptosystem based on double random phase encoding (DRPE). This article is upgraded through an interference-based asymmetric optical image encryption technique, equal modulus decomposition (EMD) and deploying of the devil’s vortex Fresnel Mask (DVFM). DVFM is designed by the phase values of the Devils Mask (DM),Vortex Mask(VM) and Fresnel Mask(FM). The key space of the cryptographic system increases with the use of DVFM phase keys and hybrid gyrator wavelet transform (GWT). A system’s efficiency is measured by the difference between the input image and the retrieved image. The capabilities of the proposed algorithm are accomplished in terms of histograms, noise attacks and correlation coefficients. The results show that the proposed optical image encryption system based on hybrid transformation is time-efficient and provides a high degree of information security without affecting its noise immunity. In addition to offering a large number of security phase keys, it has a robust resistance to a variety of potential attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Abuturab MR (2012) Securing color image using discrete cosine transform in gyrator transform domain structured-phase encoding. Opt Lasers Eng 50:1383–1390

    Article  Google Scholar 

  2. Abuturab MR (2015) Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform. J Opt Soc Am A 32:1811–1820

    Article  Google Scholar 

  3. Alfalou A, Brosseau C (2009) Optical image compression and encryption methods. Adv Opt Photon 1:589–536

    Article  Google Scholar 

  4. Anshula, Singh H (2021) Security enrichment of an asymmetric optical image encryption-based devil’s vortex Fresnel lens phase mask and lower upper decomposition with partial pivoting in gyrator transform domain. Opt Quantum Electron 53(204). https://doi.org/10.1007/s11082-021-02854-7

  5. Anshula, Singh H (2021) Cryptanalysis for double-image encryption using the DTLM in frequency plane with QR decomposition and gyrator transform. Opt Rev 28:596–610

    Article  Google Scholar 

  6. Barrera JF, Henao R, Torroba R (2005) Optical encryption method using toroidal zone plates. Opt Commun 248:35–40. https://doi.org/10.1016/j.optcom.2004.11.086

  7. Cai J, Shen X (2017) Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition. Opt Laser Technol 95:105–112

    Article  Google Scholar 

  8. Cai J, Shen X, Lei M, Lin C, Dou S (2015) Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Opt Lett 40(4):475–478

    Article  Google Scholar 

  9. Calabuig A, Sanchez-Ruiz S, Martinez-Leon L, Tajahuerce E, Fernandez-Alonso M, Furlan WD, Monsoriu JA, Pons-Marti A (2013) Generation of programmable 3D optical vortex structures through devil’s vortex-lens arrays. Appl Opt 52:5822–5829

    Article  Google Scholar 

  10. Calatayud A, Rodrigo JA, Tremon L, Furlan WD, Cristobal G, Monsoriu JA (2012) Experimental generation and characterization of Devil’s vortex-lenses. Appl Phys B Lasers Opt 106:915–919

    Article  Google Scholar 

  11. Carnicer A, Montes-Usategui M, Arcos S, Juvells I (2005) Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Opt Lett 30(13):1644–1646

    Article  Google Scholar 

  12. Chen L, Zhao D (2005) Optical image encryption based on fractional wavelet transform. Opt Commun 254:361–367

    Article  Google Scholar 

  13. Chen H, Tanougast C, Liu Z, Sieler L (2017) Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains. Opt Lasers Eng 93:1–8

    Article  Google Scholar 

  14. Fatima A, Mehra I, Nishchal NK (2016) Optical image encryption using equal modulus decomposition and multiple diffractive imaging. J Opt 18(8):085701

    Article  Google Scholar 

  15. Girija R, Singh H (2019) Triple-level cryptosystem using deterministic masks and modified Gerchberg-Saxton iterative algorithm in fractional Hartley domain by positioning singular value decomposition. Optik 187:238–257

    Article  Google Scholar 

  16. Girija R, Singh H (2019) An asymmetric cryptosystem based on the random weighted singular value decomposition and fractional Hartley domain. Multimed Tools Appl 78:1–19

    Google Scholar 

  17. Girija R, Anshula, Singh H (2021) Security-enhanced optical nonlinear cryptosystem based on modified Gerchberg- Saxton iterative algorithm. Optik 244:167568

    Article  Google Scholar 

  18. Javidi B et al (2016) Roadmap on optical security. J Opt 18:1–39

    Article  Google Scholar 

  19. Khurana M, Singh H (2019) A spiral-phase rear mounted triple masking for secure optical image encryption based on gyrator transform. Recent Pat Comput Sci 12(2):80–84

    Article  Google Scholar 

  20. Kong D, Shen X (2014) Multiple-image encryption based on optical wavelet transform and multichannel fractional Fourier transform. Opt Lasers Eng 57:343–349

    Article  Google Scholar 

  21. Kumar P, Joseph J, Singh K (2016) Double random phase encoding based optical encryption systems using some linear canonical transforms: weaknesses and countermeasures. In: John J. Healy, M. A. Kutay, H. M. Ozaktas, J. T. Sheridan (eds), Springer series in Optical Sciences, 198, 367–396

  22. Kumar R, Bhaduri B, Nishchal NK (2017) Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition. J Opt 20(1):015701

    Article  Google Scholar 

  23. Matoba O, Nomura T, Perez-Cabre E, Millan MS, Javidi B (2009) Optical techniques for information security. Proc IEEE 97:1128–1148

    Article  Google Scholar 

  24. Mehra I, Nishchal NK (2015) Optical asymmetric image encryption using gyrator wavelet transform. Opt Commun 354:344–352

    Article  Google Scholar 

  25. Mehra I, Fatima A, Nishchal NK (2017) Gyrator wavelet transform. IET Image Process 12(3):432–437

    Article  Google Scholar 

  26. Mendlovic D, Konforti N (1993) Optical realization of the wavelet transform for two-dimensional objects. Appl Opt 32:6542–6546

    Article  Google Scholar 

  27. Millan MS, Perez-Cabre E (2011) In: Cristobal G, Schelkens P, Thienpont H (eds) Optical data encryption, “Optical and Digital Image Processing”: Fundamentals and Applications. Wiley, pp 739–767

    Chapter  Google Scholar 

  28. Mitry M, Doughty DC, Chaloupka JL, Anderson ME (2012) Experimental realization of the devil’s vortex Fresnel lens with a programmable spatial light modulator. Appl Opt 51:4103–4108

    Article  Google Scholar 

  29. Peng X, Zhang P, Wei H, Yu B (2006) Known-plaintext attack on optical encryption based on double random phase keys. Opt Lett 31(8):1044–1046

    Article  Google Scholar 

  30. Peng X, Wei H, Zhang P (2006) Chosen-plaintext attack on lens-less double-random phase encoding in the Fresnel domain. Opt Lett 31(22):3261–3263

    Article  Google Scholar 

  31. Pu J, Jones PH (2015) devil’s lens optical tweezers. Opt Express 23:8190–8199

    Article  Google Scholar 

  32. Qin W, Peng X (2010) Asymmetric cryptosystem based on phase-truncated Fourier transform. Opt Lett 35:118–120

    Article  Google Scholar 

  33. Rajput SK, Nishchal NK (2012) Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask. Appl Opt 51(22):5377–5386

    Article  Google Scholar 

  34. Refregier P, Javidi B (1995) Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett 20:767–769

    Article  Google Scholar 

  35. Rodrigo JA, Alieva T, Calvo ML (2007) Gyrator transform: properties and applications. Opt Express 15(2190–2203):2190–2203

    Article  Google Scholar 

  36. Sangwan A, Singh H (2021) A secure asymmetric optical image encryption based on phase truncation and singular value decomposition in linear canonical transform domain. Int J Opt 2021, Article ID 5510125, 19 pages

  37. Singh H (2016) Devil’s vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncated in gyrator wavelet transform. Opt Lasers Eng 81:125–139

    Article  Google Scholar 

  38. Singh H, Yadav AK, Vashisth S, Singh K (2014) Fully-phase image encryption using double random-structured phase masks in gyrator domain. Appl Opt 53:6472–6481

    Article  Google Scholar 

  39. Situ G, Zhang J (2004) Double random-phase encoding in the Fresnel domain. Opt Lett 49:1584–1586

    Article  Google Scholar 

  40. Sui L, Zhou B, Ning X, Tian A (2016) Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Opt Express 24:499–515

    Article  Google Scholar 

  41. Unnikrishnan G, Joseph J, Singh K (2000) Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett 25:887–889

    Article  Google Scholar 

  42. Vilardy JM, Useche J, Torres CO, Mattos L (2011) Image encryption using the fractional wavelet transform. J Phys Conf Ser (IOP) 274:012047

    Article  Google Scholar 

  43. Wang Y, Quan C, Tay CJ (2016) New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Appl Opt 55(4):679–686

    Article  Google Scholar 

  44. Yadav S, Singh H (2021) Unsymmetric image encryption using lower-upper decomposition and structured phase mask in the fractional Fourier domain. Recent Adv Comput Sci Commun 14(8):2691–2704

    Article  Google Scholar 

  45. Yadav S, Singh H (2021) Image enhancement using hybrid Fresnel phase mask, hybrid mask and singular value decomposition in affine and Fresnel transform domain. Recent Adv Comput Sci Commun 14(6):1987–2000

    Article  Google Scholar 

  46. Yadav S, Singh H (2021) Improving security by utilizing hybrid deterministic phase mask and orthogonal encoding. Multidimens Syst Signal Process, Springer 33:99–120. https://doi.org/10.1007/s11045-021-00788-7

    Article  Google Scholar 

  47. Yadav AK, Vashisth S, Singh H, Singh K (2015) Optical cryptography and watermarking using some Fractional canonical transforms, and structured masks. Advances in optical and Eng.: Proc. IEM Optronix 2014, Springer 25–36

  48. Zamrarni W, Ahouzi E, Lizana A, Campos J, Yzuel MJ (2016) Optical image encryption technique based on deterministic phase masks. Opt Eng 55(10):103108

    Article  Google Scholar 

  49. Zhou NR, Wang Y, Gong L (2011) Novel optical image encryption scheme based on fractional Mellin transform. Opt Commun 284:3234–3242

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the management of The NorthCap University, Gurugram for their encouragement for supporting of various research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hukum Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anshula, Singh, H. Ensuring security of cryptosystems with DVFM-, modified equal modulus decomposition in the domain of gyrator wavelet transform. Multimed Tools Appl 82, 5965–5985 (2023). https://doi.org/10.1007/s11042-022-13584-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13584-7

Keywords

Navigation