Skip to main content

Advertisement

Log in

An effective shearlet-based anisotropic diffusion technique for despeckling ultrasound medical images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The speckle is usually described as a multiplicative noise that significantly corrupts the quality and contrast in diagnostic ultrasound imaging. Therefore, the development of an effective noise reduction technique has become a crucial issue. Furthermore, the de-noising process should maintain the relevant medical information profitable for clinical diagnostic purposes. The goal of this paper is to propose an innovative technique for speckle noise removal. The core contribution of this work is the design of a new tensor-based anisotropic diffusion technique in the Shearlet domain. The idea consists of applying a directional smoothing process that depends on the local properties of the image that retains the essential structure details and improves the automatic stopping of the diffusion in the edge direction. Experimental results on both simulated and real ultrasound images indicate considerable enhancement in terms of PSNR, SSIM and ENL values carried out from the comparison of the proposed filter with existing standard denoising filters for speckle noise. These analysis results show that the proposed filter holds the higher value of PSNR (25.37 dB) and ENL (83.12) for simulated Phantom image. The experimental results on a group of representative filtered clinical data sets also demonstrate that STAD provides better smoothing performance with higher values of ENL (74.62) as compared to the state-of-the-art speckle filters. Hence in overall, these results reveal that the proposed model gives the best combination of speckle smoothing and edge retaining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Abazari R, Lakestani M (2018) Fourier based discrete shearlet transform for speckle noise reduction in medical ultrasound images. Current Med Imaging Rev 14(3):477–483

    Article  Google Scholar 

  2. Aja-Fernandez S, Alberola-lopez C (2006) On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans Image Process 15(9):2694–2701. https://doi.org/10.1109/TIP.2006.877360

    Article  Google Scholar 

  3. Aja-Fernández S, Vegas-Sánchez-Ferrero G, Martín-Fernández M, Alberola-López C (2009) Automatic noise estimation in images using local statistics. Additive Multiplicative Cases Image Vis Comput 27 (6):756–770. https://doi.org/10.1016/j.imavis.2008.08.002. http://www.sciencedirect.com/science/article/pii/S0262885608001765

    Article  Google Scholar 

  4. Bhateja V, Misra M, Urooj S, Lay-ekuakille A (2014) Bilateral despeckling filter in homogeneity domain for breast ultrasound images. In: 2014 International conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 1027–1032. https://doi.org/10.1109/ICACCI.2014.6968596

  5. Bioucas-Dias JM, Figueiredo MAT (2010) Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans Image Process 19(7):1720–1730. https://doi.org/10.1109/TIP.2010.2045029

    Article  MathSciNet  MATH  Google Scholar 

  6. Black MJ, Sapiro G, Marimont DH, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7(3):421–432. https://doi.org/10.1109/83.661192

    Article  Google Scholar 

  7. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: 2005 IEEE Computer society conference on computer vision and pattern recognition (CVPR’05). IEEE, vol 2, pp 60–65

  8. Candès EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Commun Pure Appl Math J Issued Courant Inst Math Sci 57(2):219–266

    Article  MATH  Google Scholar 

  9. Cardoso FM, Matsumoto MMS, Furuie SS (2012) Edge-preserving speckle texture removal by interference-based speckle filtering followed by anisotropic diffusion. Ultrasound Med Biol 38(8):1414–28. https://doi.org/10.1016/j.ultrasmedbio.2012.03.014

    Article  Google Scholar 

  10. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  MathSciNet  MATH  Google Scholar 

  11. Choudhury P, Tumblin J (2003) The trilateral filter for high contrast images and meshes. In: Rendering techniques, pp 1–11

  12. Coupé P, Hellier P, Kervrann C, Barillot C (2008) Bayesian non local means-based speckle filtering. In: Biomedical imaging from nano to macro, 2008. ISBI 2008. 5th IEEE international symposium on. IEEE, pp 1291–1294

  13. Cui W, Li M, Gong G, Lu K, Sun S, Dong F (2020) Guided trilateral filter and its application to ultrasound image despeckling. Biomed Signal Process Control 101625:55

    Google Scholar 

  14. Damodaran N, Ramamurthy S, Velusamy S, Kanakaraj Manickam G (2012) Speckle noise reduction in ultrasound biomedical B-Scan images using discrete topological derivative. Ultrasound Med Bio 38(2):276–286. https://doi.org/10.1016/j.ultrasmedbio.2011.10.021

    Article  Google Scholar 

  15. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14 (12):2091–2106

    Article  Google Scholar 

  16. Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1995) Wavelet shrinkage: asymptopia. J Royal J Stat Soc Series B (Methodological):301–369

  17. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. In: ACM transactions on graphics (TOG). ACM, vol 21, pp 257–266

  18. Easley GR, Barbu-McInnis M, Labate D (2015) Image registration using the shearlet transform. In: Wavelets and sparsity XVI, vol 9597, p 95970H. International society for optics and photonics

  19. Easley GR, Labate D, Colonna F (2009) Shearlet-based total variation diffusion for denoising. IEEE Trans Image Process 18(2):260–268

    Article  MathSciNet  MATH  Google Scholar 

  20. Easley GR, Patel VM, Healy DM (2009) Inverse halftoning using a shearlet representation. In: Wavelets XIII, vol 7446, p 74460C. International society for optics and photonics

  21. El-Baz A, Beache GM, Gimel’farb G, Suzuki K, Okada K, Elnakib A, Soliman A, Abdollahi B (2013) Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging 2013:942353. https://doi.org/10.1155/2013/942353

    Article  Google Scholar 

  22. Farnebäck G (2002) Polynomial Expansion For Orientation And Motion Estimation. Ph.D. thesis, Linköping University Electronic Press

    MATH  Google Scholar 

  23. Frost VS, Stiles JA, Shanmugan KS, Holtzman JC (1982) A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell PAMI-4(2):157–166. https://doi.org/10.1109/TPAMI.1982.4767223

    Article  Google Scholar 

  24. Gai S, Zhang B, Yang C, Yu L (2018) Speckle noise reduction in medical ultrasound image using monogenic wavelet and laplace mixture distribution. Digital Signal Process 72:192–207

    Article  Google Scholar 

  25. Gómez Flores W, Pereira WCDA, Infantosi AFC (2014) Breast ultrasound despeckling using anisotropic diffusion guided by texture descriptors. Ultrasound in Med Bio 40 (11):2609–21. https://doi.org/10.1016/j.ultrasmedbio.2014.06.005

    Article  Google Scholar 

  26. Goodman JW (1976) Some fundamental properties of speckle. JOSA 66(11):1145–1150

    Article  Google Scholar 

  27. Goodman JW (2007) Speckle phenomena in optics: theory and applications. Roberts and Company Publishers

  28. Hamrouni K, Khlifa N (2006) Two Methods for Analysis of Dynamic Scintigraphic Images of the Heart. Int. Arab J. Inf. Technol. 3(2):118–125

    Google Scholar 

  29. Häuser S, Steidl G (2012) Fast finite shearlet transform. arXiv:1202.1773

  30. Hore A. Ziou (2010) Image quality metrics: PSNR vs. SSIM. In: 2010 20th International conference on pattern recognition. IEEE, pp 2366–2369. https://doi.org/10.1109/ICPR.2010.579. http://ieeexplore.ieee.org/document/5596999/

  31. Jain SK, Ray RK (2020) Non-linear diffusion models for despeckling of images: achievements and future challenges. IETE Tech Rev 37(1):66–82

    Article  Google Scholar 

  32. Jensen JA (2001) Users’ guide for the field ii program. Technical university of denmark 2800:28

    Google Scholar 

  33. Jomaa H, Mabrouk R, Morain-Nicolier F, Khlifa N (2016) Multi-scale and Non Local Mean based filter for Positron Emission Tomography imaging denoising, 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 108–112. https://doi.org/10.1109/ATSIP.2016.7523063

  34. Jensen JA, Munk P (1997) Computer phantoms for simulating ultrasound B-mode and CFM images

  35. Khare A, Khare M, Jeong Y, Kim H, Jeon M (2010) Despeckling of medical ultrasound images using Daubechies complex wavelet transform. Signal Process 90(2):428–439. https://doi.org/10.1016/j.sigpro.2009.07.008

    Article  MATH  Google Scholar 

  36. Khlifa N, Gribaa N, Mbazaa I, Hamruoni K (2009) A Based Bayesian Wavelet Thresholding Method to Enhance Nuclear Imaging. International Journal of Biomedical Imaging 2009:10. Article ID 506120. https://doi.org/10.1155/2009/506120

    Article  Google Scholar 

  37. Krissian K, Westin CF, Kikinis R, Vosburgh KG (2007) Oriented speckle reducing anisotropic diffusion. IEEE Trans Image Process 16(5):1412–1424. https://doi.org/10.1109/TIP.2007.891803

    Article  MathSciNet  MATH  Google Scholar 

  38. Kroon DJ, Slump CH, Maal TJJ (2010) Optimized anisotropic rotational invariant diffusion scheme on cone-beam CT. Med Image Comput Comput-Assisted Inter : MICCAI .. Int Conf Med Image Comput Comput-Assisted Inter 13(Pt 3):221–8

    Google Scholar 

  39. Kuan DT, Sawchuk AA, Strand TC, Chavel P (1985) Adaptive noise smoothing filter for images with Signal-Dependent noise. IEEE Trans Pattern Anal Mach Intell PAMI-7(2):165–177. https://doi.org/10.1109/TPAMI.1985.4767641

    Article  Google Scholar 

  40. LOPES A, NEZRY E, TOUZI R, LAUR H (1993) Structure detection and statistical adaptive speckle filtering in SAR images. Int J Remote Sens 14 (9):1735–1758. https://doi.org/10.1080/01431169308953999

    Article  Google Scholar 

  41. Labate D, Lim WQ, Kutyniok G, Weiss G (2005) Sparse multidimensional representation using shearlets. In: Wavelets XI, vol 5914, p 59140U. International society for optics and photonics

  42. Lee JS (1980) Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell PAMI-2 (2):165–168. https://doi.org/10.1109/TPAMI.1980.4766994. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4766994

    Article  Google Scholar 

  43. Liu SQ, Hu SH, Xiao Y, An YL (2014) Bayesian Shearlet shrinkage for SAR image de-noising via sparse representation. Multidim Syst Sign Process 25 (4):683–701. https://doi.org/10.1007/s11045-013-0225-8

    Article  Google Scholar 

  44. Liu X, Liu J, Xu X, Chun L, Tang J, Deng Y (2011) A robust detail preserving anisotropic diffusion for speckle reduction in ultrasound images. BMC genomics 12 Suppl 5 (Suppl 5):S14. https://doi.org/10.1186/1471-2164-12-S5-S14

    Article  Google Scholar 

  45. Luo Y, Qin J, Xiang X, Tan Y, Liu Q, Xiang L (2020) Coverless real-time image information hiding based on image block matching and dense convolutional network. J Real-Time Image Proc 17(1):125–135

    Article  Google Scholar 

  46. Moussa O, Khlifa N (2018) Video speckle noise reduction using robust diffusion tensor in shearlet domain. In: 2018 4th International conference on advanced technologies for signal and image processing (ATSIP). IEEE, pp 1–6

  47. Moussa O, Khlifa N, Abdallah NB (2018) Video despeckling using shearlet tensor-based anisotropic diffusion. Comput Aided Geometric Design 67:34–46. https://doi.org/10.1016/j.cagd.2018.09.005

    Article  MathSciNet  MATH  Google Scholar 

  48. Ndajah P, Kikuchi H, Yukawa M, Watanabe H, Muramatsu S (2010) Ssim image quality metric for denoised images. In: Proceedings 3rd WSEAS international conference on visualization, imaging and simulation, pp 53–58

  49. Olfa M, Nawres K (2014) Ultrasound image denoising using a combination of bilateral filtering and stationary wavelet transform. In: International image processing, applications and systems conference. IEEE, pp 1–5. https://doi.org/10.1109/IPAS.2014.7043258

  50. Olfa M, Nawres K (2016) A new framwork based on the trilateral filter for despeckling ultrasoud images. In: 2016 International conference on control, decision and information technologies (coDIT). IEEE, pp 712–717. https://doi.org/10.1109/CoDIT.2016.7593650

  51. Paris S, Durand F (2009) A fast approximation of the bilateral filter using a signal processing approach. Int J Comput Vis 81(1):24–52. https://doi.org/10.1007/s11263-007-0110-8

    Article  Google Scholar 

  52. Patel VM, Easley GR, Healy DM (2009) Shearlet-Based Deconvolution. IEEE Trans Image Process, vol 18(12). https://doi.org/10.1109/TIP.2009.2029594. http://www.umiacs.umd.edu/~pvishalm/Journal_pub/ShearDec.pdf

  53. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. https://doi.org/10.1109/34.56205. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=56205

    Article  Google Scholar 

  54. Rafati M, Arabfard M, Rafati Rahimzadeh M, Voshtani H, Moladoust H (2015) A comparative study of three speckle reducing methods for intima-media thickness ultrasound images. Iranian Red Crescent Med J 17(2):e25013. https://doi.org/10.5812/ircmj.25013

    Article  Google Scholar 

  55. Ramos-Llorden G, Vegas-Sanchez-Ferrero G, Martin-Fernandez M, Alberola-Lopez C, Aja-Fernandez S (2015) Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Trans Image Process 24(1):345–358. https://doi.org/10.1109/TIP.2014.2371244

    Article  MathSciNet  MATH  Google Scholar 

  56. Schug DA, Easley GR, O ’leary DP (2011) Three-dimensional shearlet edge analysis. Neural Netw Biosyst Nanoengineering IX. http://www.cs.umd.edu/~oleary/reprints/c43.pdf

  57. Schultz T, Weickert J, Seidel HP (2009) A Higher Order Structure Tensor, pp 263–279. Springer, Berlin

    MATH  Google Scholar 

  58. Shao D, Zhong M, Liu DC (2015) A fast bilateral filter with application to artefact reduction. Comput Methods Biomec Biomed Eng 18(4):376–81. https://doi.org/10.1080/10255842.2013.803080

    Article  Google Scholar 

  59. Tauber C, Batatia H, Ayache A (2004) A robust speckle reducing anisotropic diffusion. In: Image processing, 2004. ICIP’04. 2004 international conference on. IEEE, vol 1, pp 247–250

  60. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision (IEEE cat. no.98CH36271), pp 839–846. Narosa publishing house. https://doi.org/10.1109/ICCV.1998.710815

  61. Tounsi Y, Kumar M, Nassim A, Mendoza-Santoyo F, Matoba O (2019) Speckle denoising by variant nonlocal means methods. Appl Optics 58 (26):7110–7120

    Article  Google Scholar 

  62. Tur M, Chin KC, Goodman JW (1982) When is speckle noise multiplicative? Appl Opt 21(7):1157. https://doi.org/10.1364/AO.21.001157

    Article  Google Scholar 

  63. Vegas-Sanchez-Ferrero G, Aja-Fernandez S, Martín-Fernández M, Frangi AF, Palencia C (2010) Probabilistic-driven oriented speckle reducing anisotropic diffusion with application to cardiac ultrasonic images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 518–525

  64. Vishwa A, Sharma S (2012) Modified method for denoising the ultrasound images by wavelet thresholding. Int J Intell Syst Appl (IJISA) 4(6):25

    Google Scholar 

  65. Weickert J (1998) Anisotropic diffusion in image processing, vol 1 Teubner Stuttgart

  66. Weickert J (1999) Coherence-Enhancing diffusion filtering. Int J Comput Vis 31(2/3):111–127. https://doi.org/10.1023/A:1008009714131

    Article  MATH  Google Scholar 

  67. Wong WC, Chung AC, Yu SC (2004) Trilateral filtering for biomedical images. In: Biomedical imaging: nano to macro, 2004. IEEE international symposium on. Citeseer, pp 820–823

  68. Yin X, Zhang M, Wang L, Liu Y (2020) Interface debonding performance of precast segmental nano-materials based concrete (psnbc) beams. Mater Express 10(8):1317–1327

    Article  Google Scholar 

  69. Yu Y, Acton ST (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process Publication IEEE Signal Process Soc 11 (11):1260–70. https://doi.org/10.1109/TIP.2002.804276. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1097762

    MathSciNet  Google Scholar 

  70. Yu F, Liu L, He B, Huang Y, Shi C, Cai S, Song Y, Du S, Wan Q (2019) Analysis and fpga realization of a novel 5d hyperchaotic four-wing memristive system, active control synchronization, and secure communication application. Complexity, vol 2019

  71. Yu F, Liu L, Shen H, Zhang Z, Huang Y, Cai S, Deng Z, Wan Q (2020) Multistability analysis, coexisting multiple attractors, and fpga implementation of yu–wang four-wing chaotic system. Math Probl Eng, vol 2020

  72. Yu F, Liu L, Shen H, Zhang Z, Huang Y, Shi C, Cai S, Wu X, Du S, Wan Q (2020) Dynamic analysis, circuit design, and synchronization of a novel 6d memristive four-wing hyperchaotic system with multiple coexisting attractors. Complexity, vol 2020

  73. Zénere MP (2012) Sar image quality assesment. Master in emergency early warning and response space applications. Universidad Nacional de Cordoba

  74. Zhang J, Xie Z, Sun J, Zou X, Wang J (2020) A cascaded r-cnn with multiscale attention and imbalanced samples for traffic sign detection. IEEE Access 8:29742–29754

    Article  Google Scholar 

  75. Zhou Y, Zang H, Xu S, He H, Lu J, Fang H (2019) An iterative speckle filtering algorithm for ultrasound images based on bayesian nonlocal means filter model. Biomed Signal Process Control 48:104–117

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Center of Radiology and Medical Imaging of Dr Noureddine Ben Abdallah for providing the real ultrasound data. The authors´ thanks are also extended to the anonymous reviewers for their fruitful comments and recommendations, which have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Moussa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, O., Khlifa, N. & Morain-Nicolier, F. An effective shearlet-based anisotropic diffusion technique for despeckling ultrasound medical images. Multimed Tools Appl 82, 10491–10514 (2023). https://doi.org/10.1007/s11042-022-13642-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13642-0

Keywords