Skip to main content

Advertisement

Log in

Hybrid modified marine predators algorithm with teaching-learning-based optimization for global optimization and abrupt motion tracking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Marine predators algorithm (MPA) has solved many challenging optimization problems since proposed. However, corresponding to specific optimization tasks (e.g., visual tracking), it is usually hard to select correct multiple parameters in MPA, which will greatly limit the exploitation and exploration performance. As a result, MPA could be misled to a local minima or even did not converge. To solve this issue, we advise an enhanced version of MPA based on teaching-learning-based optimization (MMPA-TLBO) which can concurrently improve the solution accuracy and the convergence speed. Specifically, first, we propose a modified MPA (MMPA) that leverages chaotic map and opposition-based learning strategy in the initialization stage to generate high-quality individuals. Second, we introduce a parameter-free teaching-learning-based optimization method with strong exploitation operator into MPA, called MMPA-TLBO, which effectively trade-off between the exploitation and exploration procedures. Finally, extensive experiments over 23 benchmark functions, CEC2017 benchmark problems and two engineering design problems show that MMPA-TLBO is better than other algorithms. Furthermore, we perform a thought-provoking case study of MMPA-TLBO on visual tracking. The experimental results show that the MMPA-TLBO tracker can outperform other trackers with a satisfied margin, especially for abrupt motion tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Abdel-Basset M, Wang GG, Sangaiah AK, Rushdy E (2019) Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimed Tools Appl 78(4):3861–3884

    Article  Google Scholar 

  2. Abdel-Basset M, El-Shahat D, Chakrabortty RK, Ryan M (2021) Parameter estimation of photovoltaic models using an improved marine predators algorithm. Energy Convers Manag 227:113491

    Article  Google Scholar 

  3. Abualigah L, Diabat A, Mirjalili S, Elazizf MA, Gandomih AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahmad S, Mehfuz S, Mebarek-Oudina F, Beg J (2022) RSM analysis based cloud access security broker: a systematic literature review. Clust Comput 2022:1–31

    Google Scholar 

  5. Al-shameri WFH, Mahiub MAS (2013) Some dynamical properties of the family of tent maps. Int J Math Anal 7:1433–1449

    Article  MathSciNet  MATH  Google Scholar 

  6. Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Inf Sci 183(1):1–15

    Google Scholar 

  7. Awad NH, Ali MZ, Suganthan PN (2017) Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In: 2017 IEEE congress on evolutionary computation (CEC), pp 372–379

  8. Charef-Khodja D, Toumi A, Medouakh S, Sbaa S (2021) Efficient visual tracking approach via whale optimizer and corrected background weighted histogram. Multimed Tools Appl 80(14):21381–21407

    Article  Google Scholar 

  9. Dalia Y, Hany MH, Ahmed F (2021) Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm. Energy Convers Manag 228:113692

    Article  Google Scholar 

  10. Danelljan M, Hger G, Khan F, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: Proceedings of the British machine vision conference (BMVC). Nottingham, UK, pp 1–5

  11. Daneshyar SA, Charkari NM (2022) Biogeography based optimization method for robust visual object tracking. Appl Soft Comput 122:108802

    Article  Google Scholar 

  12. Dhiman G, Kumar V (2018) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl Based Syst 165:159–165

    Google Scholar 

  13. Dinh PH (2021) A novel approach based on three-scale image decomposition and marine predators algorithm for multi-modal medical image fusion. Biomed Signal Process Control 67(2):1–14

    Google Scholar 

  14. Dorigo M, Stützle T (2019) Ant colony optimization: overview and recent advances. Handbook of Metaheuristics 2019:311–351

    Article  MathSciNet  Google Scholar 

  15. Du N, Zhou Y, Deng W, Luo Q (2022) Improved chimp optimization algorithm for three-dimensional path planning problem. Multimed Tools Appl 128:1–26

    Google Scholar 

  16. Eberhart R, Kennedy J (2002) Mhs95 sixth international symposium on micro machine & human science. IEEE

  17. Elaziz MA, Babu TS, Ibrahim AI, Lu SF, Nastasi B, Alotaibi MA, Hossain MA, Yousri D (2021) Enhanced marine predators algorithm for identifying static and dynamic photovoltaic models parameters. Energy Convers Manag 236:113971

    Article  Google Scholar 

  18. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  19. Henriques J, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  20. Houssein EH, Mahdy MA, Shebl D, Manzoor A, Sarkar R, Mohamed WM (2022) An efficient slime mould algorithm for solving multi-objective optimization problems. Expert Syst Appl 187:115870

    Article  Google Scholar 

  21. Issa M, Hassanien AE, Oliva D, Helmi A, Ziedan I, Alzohairy A (2018) ASCA-PSO: adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Syst Appl 99:56–70

    Article  Google Scholar 

  22. Kaidi W, Khishe M, Mohammadi M (2022) Dynamic levy flight chimp optimization. Knowl-Based Syst 235:107625

    Article  Google Scholar 

  23. Kanmani M, Narasimhan V (2019) Particle swarm optimisation aided weighted averaging fusion strategy for CT and MRI medical images. Int J Biomed Eng Technol 31(3):278–291

    Article  Google Scholar 

  24. Madheswari K, Venkateswaran N, Ganeshkumar N (2015) Entropy optimized contrast enhancement for gray scale images. Int J Appl Eng Res 10 (55):1590–1595

    Google Scholar 

  25. Madheswari K, Venkateswaran N, Sowmiya V (2016) Visible and thermal image fusion using curvelet transform and brain storm optimization. 2016 IEEE Region 10 Conference (TENCON). IEEE, pp 341–359

  26. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  27. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  28. Mueller M, Smith N, Ghanem B (2017) Context-aware correlation filter tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, HI, USA, pp 1396–1404

  29. Nathan SS, Kanmani S, Kumar S, Kanmani M (2018) Optimized multi scale image fusion technique using discrete wavelet transform and particle swarm optimization for colour multi focus images. Int J Appl Eng Res 13(10):8179–8186

    Google Scholar 

  30. Nathan SS, ShivaniKanmani SK, Kanmani M (2018) Survey on digital age-smarter cradle system for enhanced parenting. Int J Appl Eng Res 13 (10):8187–8193

    Google Scholar 

  31. Nyo MT, Mebarek-Oudina F, Hlaing SS, Khan NA (2022) Otsu’s thresholding technique for MRI image brain tumor segmentation. Multimed Tools Appl 2022:1–13

    Google Scholar 

  32. Parameswaran T, Palanisamy C, Madheswari K (2012) Topology management based energy balancing model for IPS in MANET using MEC clustering algorithm. Int J Comput Appl 975:8887

    Google Scholar 

  33. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. J Eng Indus 98(3):97–97

    Article  Google Scholar 

  34. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315

    Article  Google Scholar 

  35. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA : a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  36. Rutenbar RA (1989) Simulated annealing algorithms: an overview. Circuits & Devices Magazine IEEE 5(1):19–26

    Article  Google Scholar 

  37. Sakthiumamaheswari M, Congovi PS, Kanmani M (2018) Medicine information mobile application using tablet image anaysis using android studio. Int J Appl Eng Res 13(10):8407–8412

    Google Scholar 

  38. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  39. Sattar M, Sumaiti AA, Ali H, Zaki Diab AA (2021) Marine predators algorithm for parameters estimation of photovoltaic modules considering various weather conditions. Neural Comput Applic 33:11799–11819

    Article  Google Scholar 

  40. Shadravan S, Naji HR, Bardsiri VK (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34

    Article  Google Scholar 

  41. Shaheen M, Yousri D, Hasanien HM, Fathy A, Muyeen SM (2020) A novel application of improved marine predators algorithm and particle swarm optimization for solving the ORPD problem. Biomed Signal Process Control 13(21):1–23

    Google Scholar 

  42. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  43. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun X, Wang G, Xu L (2021) Yuanh, Yousefi N Optimal performance of a combined heat-power system with a proton exchange membrane fuel cell using a developed marine predators algorithm. J Clean Prod 284:124776

    Article  Google Scholar 

  45. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, New York

    Book  MATH  Google Scholar 

  46. Tanabe R, Tanabe FAR, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC), pp 1658–1665

  47. Tao Z, Liu X, Xia Y, Wang X, Yang L, Huang X, Chua T (2022) Self-supervised learning for multimedia recommendation. IEEE Trans Multimedia 2022:1–10

    Google Scholar 

  48. Theresa XB, Madheswari K (2018) Thermal and visible video fusion using curvelet transform. Int J Appl Eng Res 13(11):8831–8836

    Google Scholar 

  49. Wang D, Lu H, Yang M (2016) Robust visual tracking via least softthreshold squares. IEEE Trans Circuits Syst Video Technol 26(9):1709–1721

    Article  Google Scholar 

  50. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  51. Xu X, Hu Z, Su Q, Li Y, Dai J (2020) Multivariable grey prediction evolution algorithm: a new metaheuristic. Appl Soft Comput 89:106086

    Article  Google Scholar 

  52. Xu Y, Wang Z, Li Z, Yuan Y, Yu G (2020) Siamfc++: towards robust and accurate visual tracking with target estimation guidelines. Proc AAAI Conf Artif Intell 34(07):12549–12556

    Google Scholar 

  53. Yang W, Xia K, Fan S, Wang L, Li T, Zhang J, Feng Y (2022) A multi-strategy whale optimization algorithm and its application. Eng Appl Artif Intell 108:104558

    Article  Google Scholar 

  54. Zhang K, Zhang L, Liu Q, Zhang D, Yang M (2014) Fast visual tracking via dense spatiotemporal context learning. In: European conference on computer vision (ECCV). Zurich, Switzerland, pp 127–141

  55. Zhang K, Zhang L, Yang M (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

  56. Zhang H, Gao Z, Ma X, Zhang J, Zhang J (2019) Hybridizing teaching-learning-based optimization with adaptive grasshopper optimization algorithm for abrupt motion tracking. IEEE Access 7:168575–168592

    Article  Google Scholar 

  57. Zhang H, Gao Z, Zhang J, Yang G (2019) Visual tracking with levy flight grasshopper optimization algorithm. Chinese conference on pattern recognition and computer vision (PRCV), pp 217–227. Springer, Cham

    Google Scholar 

  58. Zhou W, Wen L, Zhang L, Du D, Luo T, Wu Y (2021) SiamCAN: real-time visual tracking based on Siamese center-aware network. IEEE Trans Image Process 30:3597–3609

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the anonymous reviewers and editors for their valuable comments and suggestions to improve this paper. Besides, This work was supported by the National Natural Science Foundation of China under Grant No.62072235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhuang.

Ethics declarations

Conflict of Interests

The author declares that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Zhuang, Y., Chen, C. et al. Hybrid modified marine predators algorithm with teaching-learning-based optimization for global optimization and abrupt motion tracking. Multimed Tools Appl 82, 19793–19828 (2023). https://doi.org/10.1007/s11042-022-13819-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13819-7

Keywords

Navigation