Skip to main content
Log in

Optimal hyperspectral band selection using robust multi-verse optimization algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Hyperspectral Images (HSI) generally have high spectral resolution when compared with multispectral and panchromatic images. On the other hand, hyperspectral images are redundant in nature and to prevent this band selection technique is adopted which is efficient to decrease the hyperspectral data size. Multi-Verse Optimizer (MVO) is a novel nature-inspired metaheuristic algorithm, and it is based on the theory of multiverse in astrophysics. MVO is used to select optimal features and the effectiveness is proved through selective bands verification by classification algorithms such as: Random Forest (RF), and Support Vector Machine (SVM). It was observed from the literature that the existing works on hyperspectral band selection lacks in convergence rate and optimal fitness value. The proposed work aims to develop an efficient algorithm for optimal band selection for hyperspectral image data and it can be further used for agricultural applications. As a pilot study, the MVO algorithm is applied on two available hyperspectral image datasets such as: Pavia university and Indian Pines. To verify the results, MVO is compared with Particle Swarm Optimization (PSO) and Hybrid PSO-MVO (HPSO-MVO) and Sparrow Search Algorithm (SSA). Fusion of PSO-MVO algorithm was attempted in this work and the effectiveness of hyperspectral band selection was found to be improved in terms of its execution time and convergence analysis. From the experimental results it was observed that the proposed algorithm gives the average accuracy of 92.5% for MVO, 90% for PSO and 91% for HPSO -MVO respectively using SVM. In addition, RF classifier is also performed which gives the average accuracy of 89.5% for MVO, 87.5% for PSO, 89% for HPSO - MVO and 88% for SSA respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1.
Fig. 4
Fig. 5
Fig. 6
Algorithm 2
Algorithm 3
Fig. 7
Algorithm 4.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

HSI:

Hyperspectral Images

MVO:

Multi-Verse Optimizer

RF:

Random Forest

SVM:

Support Vector Machine

PSO:

Particle Swarm Optimization

HPSO-MVO:

Hybrid PSO-MVO

CART:

Classification and Regression Tree

WEP:

Worm hole Existence Probability

TDR:

Traveling Distance Rate

MA:

Memetic Algorithm

SSA:

Sparrow Search Algorithm

References

  1. Alturki A, Bchir O (2017) Clustering hyperspectral data. In: Computer Science & Information Technology (CS & IT)

    Google Scholar 

  2. Anand R, Veni S, Aravinth J (2021) Robust classification technique for hyperspectral images based on 3D-discrete wavelet transform. Remote Sens 13(7):1255

    Article  Google Scholar 

  3. Aravinth J, Roopa S (2017) Identifying traces of copper in basavakote, Karnataka using hyperspectral remote sensing. 2018 Proceedings of 2017 IEEE International Conference on Technological Advancements in Power and Energy: Exploring Energy Solutions for an Intelligent Power Grid, TAP Energy. pp. 1–6

  4. Archibald R, Fann G (2007) Feature Selection and Classification of Hyperspectral Images with Support Vector Machines. IEEE Geosci Remote Sens Lett 4(4):674–677. https://doi.org/10.1109/lgrs.2007.905116

    Article  Google Scholar 

  5. Author (n.d.) Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity. Edited by John D Barrow, Paul C W Davies, and Charles L Harper, Jr. Cambridge and New York: Cambridge University Press.; index. ISBN: 0–521–83113–X. 2004. The Quarterly Review of Biology, vol. 79, no. 4, pp. 405–405, 2004. 10.1086/428147.

  6. Borzov SM, Potaturkin OI (2018) Spectral-spatial methods for hyperspectral image classification. Review. Autometry 54(6):582–599. https://doi.org/10.15372/aut20180607

    Article  Google Scholar 

  7. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  8. Chang Y, Liu J, Chen Y, Chang W, Hsieh T, Huang B (2014) Hyperspectral band selection based on parallel particle swarm optimization and impurity function band prioritization schemes. J Appl Remote Sens 8(1):084798. https://doi.org/10.1117/1.jrs.8.084798

  9. Clerici N, Weissteiner CJ, Gerard F (2012) Exploring the use of MODIS NDVI-based phenology indicators for classifying forest general habitat categories. Remote Sens 4:1781–1803

    Article  Google Scholar 

  10. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511801389

    Book  MATH  Google Scholar 

  11. Davies P (1978) Thermodynamics of black holes. Rep Prog Phys 41(8):1313–1355. https://doi.org/10.1088/0034-4885/41/8/004

    Article  Google Scholar 

  12. Ding S, Chen L (2012) Spectral and spatial feature classification of hyperspectral images based on particle swarm optimisation. Int J Innov Comput Appl 4(34):233. https://doi.org/10.1504/ijica.2012.050052

    Article  Google Scholar 

  13. Eardley D (1974) Death of White Holes in the Early Universe. Phys Rev Lett 33(7):442–444. https://doi.org/10.1103/physrevlett.33.442

    Article  Google Scholar 

  14. Faris H, Hassonah M, Al-Zoubi A, Mirjalili S, Aljarah I (2017) A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput & Applic 30(8):2355–2369. https://doi.org/10.1007/s00521-016-2818-2

    Article  Google Scholar 

  15. Feng L, Tan A-H, Lim M-H, Jiang SW (2014) Band selection for hyperspectral images using probabilistic memetic algorithm. Soft Comput 20(12):4685–4693. https://doi.org/10.1007/s00500-014-1508-1

    Article  Google Scholar 

  16. George JE, Aravinth J (2018) Estimating pollution contents in an urban area using airborne hyperspectral thermal data. 2018 international conference on wireless communications, Signal Processing and Networking, WiSPNET. 8538681

  17. Guth A (2007) Eternal inflation and its implications. J Phys A Math Theor 40(25):6811–6826. https://doi.org/10.1088/1751-8113/40/25/s25

    Article  MathSciNet  Google Scholar 

  18. Hongjun S, Qian D, Chen G, Peijun D (June 2014) Optimized Hyperspectral Band Selection Using Particle Swarm Optimization. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2659–2670

    Article  Google Scholar 

  19. Jangir P, Parmar S, Trivedi I, Bhesdadiya R (2017) A novel hybrid Particle Swarm Optimizer with multi verse optimizer for global numerical optimization and Optimal Reactive Power Dispatch problem. Eng Sci Technol Int J 20(2):570–586. https://doi.org/10.1016/j.jestch.2016.10.007

    Article  Google Scholar 

  20. Kennedy J, Eberhart R (1995) Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, vol.4, pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  21. Khoury, Ovrut B, Seiberg N, Steinhardt P, Turok N (2002) From big crunch to big bang. Physical Review D 65(8). https://doi.org/10.1103/physrevd.65.086007

  22. Landgrebe D (2002) Hyperspectral image data analysis. IEEE Signal Process Mag 19(1):17–28. https://doi.org/10.1109/79.974718

    Article  Google Scholar 

  23. Liu D, Tan KC, Goh CK, Ho WK (2007) A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybern Part B 37(1):42–50

    Article  Google Scholar 

  24. Ma A, Filippi A, Wang Z, Yin Z (2019) Hyperspectral image classification using similarity measurements-based deep recurrent neural networks. Remote Sens 11(2):194

    Article  Google Scholar 

  25. Main-Knorn M, Moisen GG, Healey SP, Keeton WS, Freeman EA, Hostert P (2011) Evaluating remote sensing and inventory-based estimation of biomass in the western carpathians. Remote Sens 3:1427–1446

    Article  Google Scholar 

  26. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790. https://doi.org/10.1109/tgrs.2004.831865

    Article  Google Scholar 

  27. Mirjalili S, Mirjalili S, Hatamlou A (2015) Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput & Applic 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  28. Morris M, Thorne K (1988) Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am J Phys 56(5):395–412. https://doi.org/10.1119/1.15620

    Article  MathSciNet  MATH  Google Scholar 

  29. Moughal T (2013) Hyperspectral image classification using support vector machine. J Phys Conf Ser 439:012042

    Article  Google Scholar 

  30. Nidhin Prabhakar TV, Geetha P (2015) Empirical wavelet transform for improved hyperspectral image classification. In: Intelligent systems technologies and applications, pp 393–401. https://doi.org/10.1007/978-3-319-23036-8_34

    Chapter  Google Scholar 

  31. Reshma S, Veni S (2018-January) “Comparative analysis of classification techniques for crop classification using airborne hyperspectral data” 2018 Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET, pp. 2272–2276

  32. Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sensing 67:93–104

  33. Sawant SS, Prabukumar M, Samiappan S (n.d.) A Band Selection Method for Hyperspectral Image Classification Based on Cuckoo Search Algorithm with Correlation Based Initialization. 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS) https://doi.org/10.1109/WHISPERS.2019.8920950

  34. Serpico S, Bruzzone L (2001) A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans Geosci Remote Sens 39(7):1360–1367. https://doi.org/10.1109/36.934069

    Article  Google Scholar 

  35. Steinhardt P, Turok N (2005) The cyclic model simplified. New Astron Rev 49(2–6):43–57. https://doi.org/10.1016/j.newar.2005.01.003

    Article  Google Scholar 

  36. Su H, Du Q, Chen G, Du P (2014) Optimized Hyperspectral Band Selection Using Particle Swarm Optimization. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2659–2670. https://doi.org/10.1109/jstars.2014.2312539

    Article  Google Scholar 

  37. Tang K, Wu J, Zhao J (2013) Adaptive particle swarm optimization algorithm based on diversity feedback. J Comput Appl 33(12):3372–3374. https://doi.org/10.3724/sp.j.1087.2013.03372

    Article  Google Scholar 

  38. Vapnik V (1995) the Nature of Statistical Learning Theory. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  39. Xu M, Shi J, Chen W, Shen J, Gao H, Zhao J (2018) A band selection method for hyperspectral image based on particle swarm optimization algorithm with dynamic sub-swarms. J Signal Process Systems 90:1269–1279

    Article  Google Scholar 

  40. Zhang M, Ma J, Gong M (2017) Unsupervised Hyperspectral Band Selection by Fuzzy Clustering with Particle Swarm Optimization. IEEE Geosci Remote Sens Lett 14(5):773–777. https://doi.org/10.1109/lgrs.2017.2681118

    Article  Google Scholar 

  41. Zhong Z, Fan B, Duan J, Wang L, Ding K, Xiang S et al (2017) Discriminant tensor spectral–spatial feature extraction for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(5):1028–1032

    Article  Google Scholar 

  42. Zhong Z, Li J, Luo Z, Chapman M (2018) Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans Geosci Remote Sens 56(2):847–858. https://doi.org/10.1109/tgrs.2017.2755542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aravinth J or Dheepika R.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

J, A., S, V., R, D. et al. Optimal hyperspectral band selection using robust multi-verse optimization algorithm. Multimed Tools Appl 82, 14663–14687 (2023). https://doi.org/10.1007/s11042-022-13956-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13956-z

Keywords

Navigation