Skip to main content
Log in

Kapur’s entropy underwater image segmentation based on multi-strategy Manta ray foraging optimization

  • Track 3: Biometrics and HCI
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image segmentation is an important part of image processing, which directly affects the quality of image processing results. Threshold segmentation is the simplest and most widely used segmentation method. However, the best method to determine the threshold has always been a NP-hard problem. Therefore, this paper proposes Kapur’s entropy image segmentation based on multi-strategy manta ray foraging optimization, which has a good effect in CEC 2017 test function and image segmentation. Manta ray foraging optimization (MRFO) is a new intelligent optimization algorithm, which has good searchability, but the local development ability is insufficient, so it can not effectively find a reliable point. To solve this defect, this paper proposes a multi-strategy learning manta ray foraging optimization algorithm, referred to as MSMRFO, which uses saltation learning to speed up the communication within the population and improve the convergence speed, and then puts forward a behavior selection strategy to judge the current situation of the population, Tent disturbance and Gaussian mutation are used to avoid the algorithm falling into local optimization and improve the convergence speed of the algorithm. In the complete CEC 2017 test set, MSMRFO is compared with 8 algorithms, including FA_CL and ASBSO are variants of new algorithms proposed in recent years. The results show that MSMRFO has good optimization ability and universality. In nine underwater image data sets, MSMRFO has better segmentation quality than the other eight algorithms, and the segmentation indicators under high threshold processing has better advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Abd El Aziz M, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256. https://doi.org/10.1016/j.eswa.2017.04.023

    Article  Google Scholar 

  2. Abd Elaziz M, Yousri D, Al-qaness MA, AbdelAty AM, Radwan AG, Ewees AA (2021) A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation. Eng Appl Artif Intell 98:104105. https://doi.org/10.1016/j.engappai.2020.104105

    Article  Google Scholar 

  3. Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13(6):3066–3091. https://doi.org/10.5555/2467341.2467507

    Article  Google Scholar 

  4. Akdag O, Yeroglu C (2021) Optimal directional overcurrent relay coordination using MRFO algorithm: A case study of adaptive protection of the distribution network of the Hatay province of Turkey. Electr Power Syst Res 192:106998. https://doi.org/10.1016/j.epsr.2020.106998

    Article  Google Scholar 

  5. Alturki FA, Farh MH, Al-Shamma’a AA, AlSharabi K (2020) Techno-economic optimization of small-scale hybrid energy systems using manta ray foraging optimizer. Electronics 9(12):2045. https://doi.org/10.3390/electronics9122045

    Article  Google Scholar 

  6. Aly M, Rezk H (2021) A MPPT based on optimized FLC using manta ray foraging optimization algorithm for thermo-electric generation systems. Int J Energy Res 45(9):13897–13910. https://doi.org/10.1002/er.6728

    Article  Google Scholar 

  7. Bao X, Jia H, Lang C (2019) A novel hybrid Harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access 7:76529–76546. https://doi.org/10.1109/ACCESS.2019.2921545

    Article  Google Scholar 

  8. Ben UC, Akpan AE, Mbonu CC, Ebong ED (2021) Novel methodology for interpretation of magnetic anomalies due to two-dimensional dipping dikes using the Manta ray foraging optimization. J Appl Geophys 192:104405. https://doi.org/10.1016/j.jappgeo.2021.104405

    Article  Google Scholar 

  9. Das S, Suganthan PN (2010) Differential evolution: A survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31. https://doi.org/10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  10. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30. https://doi.org/10.5555/1248547.1248548

    Article  MathSciNet  MATH  Google Scholar 

  11. Ekinci S, Izci D, Hekimoğlu B (2021) Optimal FOPID speed control of DC motor via opposition-based hybrid manta ray foraging optimization and simulated annealing algorithm. Arab J Sci Eng 46(2):1395–1409. https://doi.org/10.1007/s13369-020-05050-z

    Article  Google Scholar 

  12. Elmaadawy K, Abd Elaziz M, Elsheikh AH, Moawad A, Liu B, Lu S (2021) Utilization of random vector functional link integrated with manta ray foraging optimization for effluent prediction of wastewater treatment plant. J Environ Manag 298:113520. https://doi.org/10.1016/j.jenvman.2021.113520

    Article  Google Scholar 

  13. Erdmann H, Wachs-Lopes G, Gallao C, Ribeiro MP, Rodrigues PS (2015) A study of a firefly meta-heuristics for multithreshold image segmentation. In Developments in medical image processing and computational vision. Springer, Cham. pp. 279–295 https://doi.org/10.1007/978-3-319-13407-9_17

  14. Fathy A, Rezk H, Yousri D (2020) A robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm[J]. Sol Energy 207:305–316. https://doi.org/10.1016/j.solener.2020.06.108

    Article  Google Scholar 

  15. Fayad H, Hatt M, Visvikis D (2015) PET functional volume delineation using an Ant colony segmentation approach. (2015):1745–1745. https://jnm.snmjournals.org/content/56/supplement_3/1745.short

  16. Fogel DB, Atmar JW (1990) Comparing genetic operators with Gaussian mutations in simulated evolutionary processes using linear systems. Biol Cybern 63(2):111–114. https://doi.org/10.1007/BF00203032

    Article  Google Scholar 

  17. Ghosh KK, Guha R, Bera SK, Kumar N, Sarkar R (2021) S-shaped versus V-shaped transfer functions for binary Manta ray foraging optimization in feature selection problem. Neural Comput & Applic 33(17):11027–11041. https://doi.org/10.1007/s00521-020-05560-9

    Article  Google Scholar 

  18. Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Graph Image Process 29(1):100–132. https://doi.org/10.1016/S0734-189X(85)90153-7

    Article  Google Scholar 

  19. Hassan MH, Houssein EH, Mahdy MA, Kamel S (2021) An improved manta ray foraging optimizer for cost-effective emission dispatch problems. Eng Appl Artif Intell 100:104155. https://doi.org/10.1016/j.engappai.2021.104155

    Article  Google Scholar 

  20. Hemeida MG, Alkhalaf S, Mohamed AAA, Ibrahim AA, Senjyu T (2020) Distributed generators optimization based on multi-objective functions using manta rays foraging optimization algorithm (MRFO). Energies 13(15):3847. https://doi.org/10.3390/en13153847

    Article  Google Scholar 

  21. Hemeida MG, Ibrahim AA, Mohamed AAA, Alkhalaf S, El-Dine AMB (2021) Optimal allocation of distributed generators DG based Manta ray foraging optimization algorithm (MRFO). Ain Shams Eng J 12(1):609–619. https://doi.org/10.1016/j.asej.2020.07.009

    Article  Google Scholar 

  22. Higashi N, Iba H (2003, April) Particle swarm optimization with Gaussian mutation. In: Proceedings of the 2003 IEEE swarm intelligence symposium. SIS'03 (cat. No. 03EX706). IEEE. pp. 72-79 https://doi.org/10.1109/SIS.2003.1202250

  23. Houssein EH, Zaki GN, Diab AAZ, Younis EM (2021) An efficient Manta ray foraging optimization algorithm for parameter extraction of three-diode photovoltaic model. Comput Electr Eng 94:107304. https://doi.org/10.1016/j.compeleceng.2021.107304

    Article  Google Scholar 

  24. Houssein EH, Ibrahim IE, Neggaz N, Hassaballah M, Wazery YM (2021) An efficient ECG arrhythmia classification method based on Manta ray foraging optimization. Expert Syst Appl 181:115131. https://doi.org/10.1016/j.eswa.2021.115131

    Article  Google Scholar 

  25. Houssein EH, Emam MM, Ali AA (2021) Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images. Neural Comput & Applic 33(24):16899–16919. https://doi.org/10.1007/s00521-021-06273-3

    Article  Google Scholar 

  26. Islam MJ, Luo P, Sattar J (2020) Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. arXiv preprint arXiv:2002.01155. https://doi.org/10.48550/arXiv.2002.01155

  27. Jena B, Naik MK, Panda R, Abraham A (2021) Maximum 3D Tsallis entropy based multilevel thresholding of brain MR image using attacking Manta ray foraging optimization. Eng Appl Artif Intell 103:104293. https://doi.org/10.1016/j.engappai.2021.104293

    Article  Google Scholar 

  28. Jia H, Lang C, Oliva D, Song W, Peng X (2019) Dynamic Harris hawks optimization with mutation mechanism for satellite image segmentation. Remote Sens 11(12):1421. https://doi.org/10.3390/rs11121421

    Article  Google Scholar 

  29. Jin H, Li Y, Xing B, Wang L (2016) A geometric image segmentation method based on a bi-convex, fuzzy, variational principle with teaching-learning optimization. J Intell Fuzzy Syst 31(6):3075–3081. https://doi.org/10.3233/JIFS-169193

    Article  Google Scholar 

  30. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697. https://doi.org/10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

  31. Kennedy J, Eberhart RC (1997, October) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation. IEEE. (Vol. 5, pp. 4104-4108) https://doi.org/10.1109/ICSMC.1997.637339

  32. Meng XB, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bio-inspired optimisation algorithm: bird swarm algorithm. J Exp Theor Artif Intell 28(4):673–687. https://doi.org/10.1080/0952813X.2015.1042530

    Article  Google Scholar 

  33. Micev M, Ćalasan M, Ali ZM, Hasanien HM, Aleem SHA (2021) Optimal design of automatic voltage regulation controller using hybrid simulated annealing–Manta ray foraging optimization algorithm. Ain Shams Eng J 12(1):641–657. https://doi.org/10.1016/j.asej.2020.07.010

    Article  Google Scholar 

  34. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  35. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  36. Pare S, Kumar A, Bajaj V, Singh GK (2016) A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve. Appl Soft Comput 47:76–102. https://doi.org/10.1016/j.asoc.2016.05.040

    Article  Google Scholar 

  37. Peng H, Zhu W, Deng C, Wu Z (2021) Enhancing firefly algorithm with courtship learning. Inf Sci 543:18–42. https://doi.org/10.1016/j.ins.2020.05.111

    Article  MathSciNet  MATH  Google Scholar 

  38. Peng H, Zeng Z, Deng C, Wu Z (2021) Multi-strategy serial cuckoo search algorithm for global optimization. Knowl-Based Syst 214:106729. https://doi.org/10.1016/j.knosys.2020.106729

    Article  Google Scholar 

  39. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  40. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  41. Rather SA, Bala PS (2021) Constriction coefficient based particle swarm optimization and gravitational search algorithm for multilevel image thresholding. Expert Syst 38(7):e12717. https://doi.org/10.1111/exsy.12717

    Article  Google Scholar 

  42. Saleh S, Kalyankar NV, Khamitkar SD (2010) Image segmentation by using threshold techniques. J Comput 2:2151–9617. https://arxiv.53yu.com/abs/1005.4020

  43. Salgotra R, Singh U (2019) The naked mole-rat algorithm. Neural Comput & Applic 31(12):8837–8857. https://doi.org/10.1007/s00521-019-04464-7

    Article  Google Scholar 

  44. Sayed GI, Solyman M, Hassanien AE (2019) A novel chaotic optimal foraging algorithm for unconstrained and constrained problems and its application in white blood cell segmentation. Neural Comput & Applic 31(11):7633–7664. https://doi.org/10.1007/s00521-018-3597-8

    Article  Google Scholar 

  45. Shaheen AM, Ginidi AR, El-Sehiemy RA, Ghoneim SS (2020) Economic power and heat dispatch in cogeneration energy systems using manta ray foraging optimizer. IEEE Access 8:208281–208295. https://doi.org/10.1109/ACCESS.2020.3038740

    Article  Google Scholar 

  46. Upadhyay P, Chhabra JK (2020) Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm. Appl Soft Comput 97:105522. https://doi.org/10.1016/j.asoc.2019.105522

    Article  Google Scholar 

  47. Wang S, Jia H, Peng X (2020) Modified salp swarm algorithm based multilevel thresholding for color image segmentation. Math Biosci Eng 17(1):700–724. https://doi.org/10.3934/mbe.2020036

    Article  MathSciNet  MATH  Google Scholar 

  48. Whitley D (1994) Genetic algorithm tutorial. Stat Comput 4(2):65–85. https://doi.org/10.1007/BF00175354

    Article  Google Scholar 

  49. Xin Lv, Xiaodong M, Jun Z (2021) Multi-threshold image segmentation based on improved sparrow search algorithm. Syst Eng Electron Technol 43(2):10. https://doi.org/10.12305/j.issn.1001-506X.2021.02.05

    Article  Google Scholar 

  50. Xin LV, Xiaodong M, Jun Z, Zhen W (2021) Chaotic sparrow search optimization algorithm. J Beijing Univ Aeronaut Astronaut 47(8):1712–1720. https://doi.org/10.13700/j.bh.1001-5965.2020.0298

    Article  Google Scholar 

  51. Xu H, Song H, Xu C, Wu X, Yousefi N (2020) Exergy analysis and optimization of a HT-PEMFC using developed Manta ray foraging optimization algorithm. Int J Hydrog Energy 45(55):30932–30941. https://doi.org/10.1016/j.ijhydene.2020.08.053

    Article  Google Scholar 

  52. Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1):22–34. https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  53. Yang XS, Deb S (2009, December) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE. pp. 210-214 https://doi.org/10.1109/NABIC.2009.5393690

  54. Yang Z, Wu A (2020) A non-revisiting quantum-behaved particle swarm optimization based multilevel thresholding for image segmentation. Neural Comput & Applic 32(16):12011–12031. https://doi.org/10.1007/s00521-019-04210-z

    Article  Google Scholar 

  55. Yu Y, Gao S, Wang Y, Cheng J, Todo Y (2018) ASBSO: an improved brain storm optimization with flexible search length and memory-based selection. IEEE Access 6:36977–36994. https://doi.org/10.1109/ACCESS.2018.2852640

    Article  Google Scholar 

  56. Zhao D, Liu L, Yu F, Heidari AA, Chen H (2020) Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi-threshold image segmentation. Expert Syst Appl, http://aliasgharheidari.com:114122. https://doi.org/10.1016/j.eswa.2020.114122

  57. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  58. Zhou Y, Yang X, Ling Y, Zhang J (2018) Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation. Multimed Tools Appl 77(18):23699–23727. https://doi.org/10.1007/s11042-018-5637-x

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos.62002046,62006106),The Project Supported by Zhejiang Provincial Natural Science Foundation of China(No.LQ21F020005), Basic public welfare research program of Zhejiang Province(No.LGG18E050011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donglin Zhu or Changjun Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 Test results of each algorithm in CEC2017
Table 3 Test results of each algorithm in CEC2017
Table 4 Average fitness values of each algorithm
Table 5 PSNR segmentation effect table for each algorithm
Table 6 SSIM segmentation effect table for each algorithm
Table 7 FSIM segmentation effect table for each algorithm
Table 8 Ranking results of MSMRFO with other algorithms
Table 9 Ranking results of MSMRFO and algorithms in recent years

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Zhou, C., Qiu, Y. et al. Kapur’s entropy underwater image segmentation based on multi-strategy Manta ray foraging optimization. Multimed Tools Appl 82, 21825–21863 (2023). https://doi.org/10.1007/s11042-022-14024-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-14024-2

Keywords

Navigation