Skip to main content
Log in

Low-rank tensor multi-view subspace clustering via cooperative regularization

  • 1227: Content-based Image Retrieval
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In order to explore the importance of the hypergraph regularization and the Tikhonov regularization in multi-view clustering, this paper proposes a novel multi-view clustering model, termed as low-rank tensor multi-view subspace clustering via collaborative regularization (LT-MSCCR). The LT-MSCCR model introduces the idea of tensor. The tensor is designed to represent the result of superimposing the subspace representation matrix, which is used to explore the high order correlations between different views, and the low-rank restriction is performed for this tensor to effectively reduce redundant information. Furthermore, we adopt the hypergraph regularization to mine effective geometric information in multi-view data. Meanwhile, we also impose the Tikhonov regularization constraint on the subspace representation matrix so as to improve the smoothness of the subspace representation matrix and enhance the recognition performance of the proposed method. In addition, we also designed a valuable approach to optimizing the proposed model and theoretically analyzing the convergence of the LT-MSCCR method. The experimental results on some datasets show that the proposed model is better than many advanced multi-view clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. https://www.cnblogs.com/picassooo/p/12890078.html

  2. https://download.csdn.net/download/wuwulala22/7210241

  3. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

  4. http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

  5. http://vision.ucmerced.edu/datasets

  6. http://www-cvr.ai.uiuc.edu/ponce_grp/data/

  7. http://mlg.ucd.ie/datasets/3sources. html

  8. http://mlg.ucd.ie/datasets/bbc.html

References

  1. Andrew G, Arora R, Bilmes J et al (2013) Deep canonical correlation analysis. In: International conference on machine learning, Atlanta, pp 1247–1255

  2. Avants BB, Tustison NJ, Stone JR (2021) Similarity-driven multi-view embeddings from high-dimensional biomedical data. Nat Comput Sci 1(2):143–152. https://doi.org/10.1038/s43588-021-00029-8

    Article  Google Scholar 

  3. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396. https://doi.org/10.1162/089976603321780317

    Article  MATH  Google Scholar 

  4. Cao X, Zhang C, Fu H et al (2015) Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, pp 586–594

  5. Chen Y, Wang S, Peng C, Hua Z, Zhou Y (2021) Generalized nonconvex low-rank tensor approximation for multi-view subspace clustering. IEEE Trans Image Process 30:4022–4035. https://doi.org/10.1109/TIP.2021.3068646

    Article  MathSciNet  Google Scholar 

  6. Chen MS, Huang L, Wang CD, Huang D, Lai JH (2021) Relaxed multi-view clustering in latent embedding space. Information Fusion 68:8–21. https://doi.org/10.1016/j.inffus.2020.10.013

    Article  Google Scholar 

  7. Chen H, Tai X, Wang W (2022) Multi-view subspace clustering with inter-cluster consistency and intra-cluster diversity among views. Appl Intell 52:9239–9255. https://doi.org/10.1007/s10489-021-02895-1

    Article  Google Scholar 

  8. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781. https://doi.org/10.1109/TPAMI.2013.57

    Article  Google Scholar 

  9. Gao H, Nie F, Li X et al (2015) Multi-view subspace clustering. In: Proceedings of the IEEE international conference on computer vision, Santiago, pp 4238–4246

  10. Guan N, Tao D, Luo Z et al (2011) Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans Image Process 20(7):2030–2048. https://doi.org/10.1109/TIP.2011.2105496

    Article  MathSciNet  MATH  Google Scholar 

  11. Han Y, Huang Y, Pan L, Zheng Y (2022) Learning multi-level and multi-scale deep representations for privacy image classification. Multimed Tools Appl 81(2):2259–2274. https://doi.org/10.1007/s11042-021-11667-5

    Article  Google Scholar 

  12. Huang A, Zhao T, Lin CW (2020) Multi-view data fusion oriented clustering via nuclear norm minimization. IEEE Trans Image Process 29:9600–9613. https://doi.org/10.1109/TIP.2020.3029883

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang G, Wang H, Peng J, Chen D, Fu X (2021) Graph-based multi-view binary learning for image clustering. Neurocomputing 427:225–237. https://doi.org/10.1016/j.neucom.2020.07.132

    Article  Google Scholar 

  14. Jiao Z, Xu C (2017) Deep multi-view robust representation learning. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), NewOrleans, pp 2851–2855

  15. Jolliffe IT (2002) Principal component analysis. J Mark Res 87(4):513. https://doi.org/10.2307/3172953

    Article  MATH  Google Scholar 

  16. Kang Z, Lin Z, Zhu X et al (2021) Structured graph learning for scalable subspace clustering: from single view to multiview. IEEE Trans Cybern 1–11. https://doi.org/10.1109/TCYB.2021.3061660

  17. Kumar A, Rai P, Daume H (2011) Co-regularized multi-view spectral clustering. Adv Neural Inf Proces Syst 24:1413–1421

    Google Scholar 

  18. Lades M, Vorbruggen JC, Buhmann J, Lange J, von der Malsburg C, Wurtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3):300–311. https://doi.org/10.1109/12.210173

    Article  Google Scholar 

  19. Li Z, Hu Z, Nie F, Wang R, Li X (2022) Multi-view clustering based on generalized low rank approximation. Neurocomputing 471:251–259. https://doi.org/10.1016/j.neucom.2020.08.049

    Article  Google Scholar 

  20. Lin Z, Chen M, Ma Y (2010) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technica Report, Rep. UILU-ENG-09-2215

  21. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. Advances in neural information processing systems, Granada Spain, pp 612–620

  22. Lin Y, Gou Y, Liu Z et al (2021) COMPLETER: incomplete multi-view clustering via contrastive prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11174–11183

  23. Liu J, Musialski P, Wonka P et al (2009) Tensor completion for estimating missing values in visual data. In: IEEE International Conference on Computer Vision, Kyoto, pp 2114–2121

  24. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2012) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184. https://doi.org/10.1109/TPAMI.2012.88

    Article  Google Scholar 

  25. Liu J, Musialski P, Wonka P, Ye J (2013) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–220. https://doi.org/10.1109/TPAMI.2012.39

    Article  Google Scholar 

  26. Lu GF, Yu QR, Wang Y, Tang G (2020) Hyper-Laplacian regularized multi-view subspace clustering with low-rank tensor constraint. Neural Netw 125:214–223. https://doi.org/10.1016/j.neunet.2020.02.014

    Article  MATH  Google Scholar 

  27. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in neural information processing systems, Vancouver, pp 849–856

  28. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  29. Pan G, Xiao L, Bai Y, Wilson TW, Stephen JM, Calhoun VD, Wang YP (2020) Multiview diffusion map improves prediction of fluid intelligence with two paradigms of fMRI analysis. IEEE Trans Biomed Eng 68(8):2529–2539. https://doi.org/10.1109/TBME.2020.3048594

    Article  Google Scholar 

  30. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  31. Sun Y, Li L, Zheng L, Hu J, Li W, Jiang Y, Yan C (2019) Image classification base on PCA of multi-view deep representation. J Vis Commun Image Represent 62:253–258. https://doi.org/10.1016/j.jvcir.2019.05.016

    Article  Google Scholar 

  32. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323. https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  33. Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(2605):2579–2605. http://citeseerx.ist.psu.edu/viewdoc/summay?doi=10.1.1.182.3980

    MATH  Google Scholar 

  34. Wang H, Yang Y, Liu B (2019) GMC: graph-based multi-view clustering. IEEE Trans Knowl Data Eng 32(6):1116–1129. https://doi.org/10.1109/TKDE.2019.2903810

    Article  Google Scholar 

  35. Wvl A, Mf A, Bs B et al (2020) Stacked penalized logistic regression for selecting views in multi-view learning-science direct. Information Fusion 61:113–123. https://doi.org/10.1016/j.inffus.2020.03.007

    Article  Google Scholar 

  36. Xie Y, Tao D, Zhang W, Liu Y, Zhang L, Qu Y (2018) On unifying multi-view self-representations for clustering by tensor multi-rank minimization. Int J Comput Vis 126(11):1157–1179. https://doi.org/10.1007/s11263-018-1086-2

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu Y, Wei M (2021) Multi-view clustering toward aerial images by combining spectral analysis and local refinement. Futur Gener Comput Syst 117:138–144. https://doi.org/10.1016/j.future.2020.11.005

    Article  Google Scholar 

  38. Xu H, Zhang X, Xia W et al (2020) Low-rank tensor constrained co-regularized multi-view spectral clustering. Neural Netw 132:245–252. https://doi.org/10.1016/j.neunet.2020.08.019

    Article  MATH  Google Scholar 

  39. Yin M, Gao J, Lin Z (2015) Laplacian regularized low-rank representation and its applications. IEEE Trans Pattern Anal Mach Intell 38(3):504–517. https://doi.org/10.1109/TPAMI.2015.2462360

    Article  Google Scholar 

  40. Zhang C, Fu H, Liu S et al (2015) Low-rank tensor constrained multi-view subspace clustering. In: Proceedings of the IEEE international conference on computer vision, Santiago, pp 1582–1590

  41. Zhang C, Hu Q, Fu H et al (2017) Latent multi-view subspace clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, pp 4279–4287

  42. Zhang C, Cheng J, Tian Q (2019) Multi-view image classification with visual, semantic and view consistency. IEEE Trans Image Proc 29:617–627. https://doi.org/10.1109/TIP.2019.2934576

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang C, Liu Y, Fu H (2019) Ae2-nets: Autoencoder in autoencoder networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, pp 2577–2585

  44. Zhou D, Huang J, Schölkopf B (2006) Learning with hypergraphs: clustering, classification, and embedding. In: proceedings of the 19th international conference on neural information processing systems, Vancouver and Whistler, pp 1601–1608

  45. Zhu X, Guo J, Nejdl W, Liao X, Dietze S (2020) Multi-view image clustering based on sparse coding and manifold consensus. Neurocomputing 403(12):53–62. https://doi.org/10.1016/j.neucom.2020.03.052

    Article  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China under Grants 61806006, China Postdoctoral Science Foundation under Grant No. 2019 M660149, the 111 Project under Grants No. B12018, and PAPD of Jiangsu Higher Education Institutions support this work.

Data availability statements

All data generated or analysed during this study are included in this published article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Ge.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Ge, H., Su, S. et al. Low-rank tensor multi-view subspace clustering via cooperative regularization. Multimed Tools Appl 82, 38141–38164 (2023). https://doi.org/10.1007/s11042-022-14298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-14298-6

Keywords