Skip to main content
Log in

Image region driven prior selection for image deblurring

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Deblurring an image has been a long researched problem. This problem is very complex due to the lack of sufficient information about the blur parameters. Image deblurring is important in applications such as remote sensing where the same image scene comprising of moving objects cannot be captured again. Since the captured image is the only known quantity, from which the blur parameters affecting it and the sharp image has to be estimated it is an illposed problem. In this paper we present a novel image deblurring algorithm which makes use of region specific priors and techniques for image deblurring. This is based on the idea that different image regions require different techniques for effective image deblurring. Applying the same technique to deblur the entire image results in a deblurred image which is sharp in only some regions whereas some regions are not effectively deblurred or have ringing artifacts. The proposed method makes use of a l1 relaxed l0 prior on the sharp edges of the image to effectively enhance the true edges of the image. An l1/l2 norm on the low peaks to avoid blurring while retaining the true values in these regions and lp norm prior on the uniform regions to avoid the generation of ringing artifacts. On an average there is about 18% increase in PSNR values and a 5% increase in the SSIM values in comparison with the existing state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Algorithm 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adam T, Paramesran R, Mingming Y, Ratnavelu K (2021) Combined higher order non-convex total variation with overlapping group sparsity for impulse noise removal. Multimed Tools Appl 80(12):18503

    Article  Google Scholar 

  2. Anwar S, Huynh CP, Porikli F (2018) Image deblurring with a class-specific prior. IEEE transactions on pattern analysis and machine intelligence 41 (9):2112

    Article  Google Scholar 

  3. Babacan SD, Molina R, Do MN, Katsaggelos AK (2012) Bayesian blind deconvolution with general sparse image priors. In: European conference on computer vision. Springer, pp 341–355

  4. Bai Y, Jia H, Jiang M, Liu X, Xie X, Gao W (2019) IEEE transactions on circuits and systems for video technology

  5. Batra D, Yadollahpour P, Guzman-Rivera A, Shakhnarovich G (2012) Diverse m-best solutions in markov random fields. In: European conference on computer vision. Springer, pp 1–16

  6. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan TF, Wong CK (1998) Total variation blind deconvolution. IEEE Trans Image Process 7(3):370

    Article  Google Scholar 

  8. Chen L, Zhang H, Ren D, Zhang D, Zuo W (2014) Medical image fusion by combining nonsubsampled contourlet transform and sparse representation, vol 484, pp 12–21. https://doi.org/10.1007/978-3-662-45643-9_2

  9. Cho S, Lee S (2009) Fast motion deblurring. ACM Trans Graph (TOG) 28(5):145

    Article  Google Scholar 

  10. Elmi Y, Zargari F, Rahmani AM (2020) Iterative approach for parametric PSF estimation. Multimed Tools Appl 79(39):29433

    Article  Google Scholar 

  11. Fang X, Zhou Q, Shen J, Jacquemin C, Shao L (2018) IEEE transactions on cybernetics

  12. Feng M, Mitchell JE, Pang JS, Shen X, Wächter A (2013) Industrial engineering and management sciences. Technical report. Northwestern University, Evanston, IL, USA

  13. Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT (2006) In: ACM SIGGRAPH 2006 papers, pp 787–794

  14. Figueiredo MA, Nowak RD (2003) An EM algorithm for wavelet-based image restoratio. IEEE Trans Image Process 12(8):906

    Article  MathSciNet  MATH  Google Scholar 

  15. Ge X, Tan J, Zhang L (2021) IEEE transactions on image processing

  16. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell, (6), p 721

  17. Gribonval R, Nielsen M (2003) Sparse representations in unions of bases. IEEE Trans Inf Theory 49(12):3320

    Article  MathSciNet  MATH  Google Scholar 

  18. He K, Sun J, Tang X (2010) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341

    Google Scholar 

  19. Javaran TA, Hassanpour H, Abolghasemi V (2019) Blind motion image deblurring using an effective blur kernel prior. Multimed Tools Appl 78 (16):22555

    Article  Google Scholar 

  20. Kotera J, Matas J, Šroubek F (2020) Restoration of fast moving objects. IEEE Trans Image Process 29:8577

    Article  MathSciNet  MATH  Google Scholar 

  21. Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-Laplacian priors. In: Advances in neural information processing systems, pp 1033–1041

  22. Krishnan D, Tay T, Fergus R (2011) In: CVPR 2011. IEEE, pp 233–240

  23. Levin A, Weiss Y, Durand F, Freeman WT (2009) In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 1964–1971

  24. Li J, Lu W (2016) Blind image motion deblurring with L0-regularized priors. J Vis Commun Image Represent 40:14

    Article  Google Scholar 

  25. Lim H, Yu S, Park K, Seo D, Paik J (2020) Texture-Aware Deblurring for Remote Sensing Images Using 0-Based Deblurring and 2-Based Fusion. IEEE J Select Topics Appl Earth Observations Remote Sensing 13:3094

    Article  Google Scholar 

  26. Lin Y, Kandel Y, Zotta M, Lifshin E (2016) In: 2016 IEEE southwest symposium on image analysis and interpretation (SSIAI). IEEE, pp 33–36

  27. Liu Y, Dong W, Gong D, Zhang L, Shi Q (2018) In: Proceedings of the European conference on computer vision (ECCV), pp 452–468

  28. Liu H, Tan S (2018) Image regularizations based on the sparsity of corner points. IEEE Trans Image Process 28(1):72

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu J, Yan M, Zeng T (2019) IEEE transactions on pattern analysis and machine intelligence

  30. McGaffin MG, Fessler JA (2015) Edge-preserving image denoising via group coordinate descent on the GPU. IEEE Trans Image Process 24(4):1273

    Article  MathSciNet  MATH  Google Scholar 

  31. Mohd Shapri AH, Abdullah MZ (2017) Accurate retrieval of region of interest for estimating point spread function and image deblurring. Imaging Sci J 65(6):327

    Article  Google Scholar 

  32. Palmer JA, Kreutz-Delgado K, Makeig S (2010) Strong sub-and super-gaussianity. In: International conference on latent variable analysis and signal separation. Springer, pp 303–310

  33. Pan J, Sun D, Pfister H, Yang MH (2017) Deblurring images via dark channel prior. IEEE Trans Pattern Anal Mach Intell 40(10):2315

    Article  Google Scholar 

  34. Perrone D, Favaro P (2015) A clearer picture of total variation blind deconvolution. IEEE Trans Pattern Anal Mach Intell 38(6):1041

    Article  Google Scholar 

  35. Poobathy D, Chezian RM, Image IJ (2014) Edge detection operators: peak signal to noise ratio based comparison. Graph Signal Process 10:55

    Article  Google Scholar 

  36. Portilla J, Tristan-Vega A, Selesnick IW (2015) Efficient and robust image restoration using multiple-feature L2-relaxed sparse analysis priors. IEEE Trans Image Process 24(12):5046

    Article  MATH  Google Scholar 

  37. Rameshan RM, Chaudhuri S, Velmurugan R (2012) In: proceedings of the eighth indian conference on computer vision, graphics and image processing, pp 1–7

  38. Ramirez C, Kreinovich V, Argaez M (2013) Industrial engineering and management sciences. Technical report. Northwestern University, Evanston, IL, USA

  39. Roth S, Black MJ (2009) Fields of experts. Int J Comput Vis 82(2):205

    Article  MATH  Google Scholar 

  40. Salau AO (2020) Recent trends in image and signal processing in computer vision. Springer, pp 19–32

  41. Salau AO, Jain S (2019) Feature extraction: a survey of the types, techniques, applications. In: 2019 International conference on signal processing and communication (ICSC). IEEE, pp 158–164

  42. Salau AO, Yesufu TK, Ogundare BS (2021) Vehicle plate number localization using a modified GrabCut algorithm. J King Saud Univ-Comput Inf Sci 33(4):399

    Google Scholar 

  43. Satish P, Srikantaswamy M, Ramaswamy NK (2020) A comprehensive review of blind deconvolution techniques for image deblurring. Traitment Du Signal 37(3):527

    Article  Google Scholar 

  44. Schuler CJ, Hirsch M, Harmeling S, Schölkopf B (2016) Learning to deblur. IEEE Trans Pattern Anal Mach Intell 38(7):1439

    Article  Google Scholar 

  45. Sha L, Schonfeld D, Wang J (2019) IEEE transactions on circuits and systems for video technology

  46. Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. Acm Trans Graph (tog) 27(3):1

    Article  Google Scholar 

  47. Shrivakshan G, Chandrasekar C (2012) A comparison of various edge detection techniques used in image processing. Int J Comput Sci Issues (IJCSI) 9 (5):269

    Google Scholar 

  48. Sun T, Barrio R, Rodríguez M, Jiang H (2019) Inertial nonconvex alternating minimizations for the image deblurring. IEEE Trans Image Process 28 (12):6211

    Article  MathSciNet  MATH  Google Scholar 

  49. Šroubek F, Šmídl V, Kotera J (2014) In: 2014 IEEE international conference on image processing (ICIP). IEEE, pp 4492–4496

  50. Tikhonov AN, Arsenin VY (1977) Great falls, MT USA: Winston

  51. Vijayarani S, Vinupriya M (2013) Performance analysis of canny and sobel edge detection algorithms in image mining. Int J Innovative Res Comput Commun Eng 1(8):1760

    Google Scholar 

  52. Weiss Y, Yanover C, Meltzer T (2012) MAP estimation, linear programming and belief propagation with convex free energies. arXiv:1206.5286

  53. Whyte O, Sivic J, Zisserman A (2014) Deblurring shaken and partially saturated images. Int J Comput Vis 110(2):185

    Article  Google Scholar 

  54. Xu L, Jia J (2010) In: European conference on computer vision. Springer, pp 157–170

  55. Xu L, Zheng S, Jia J (2013) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1107–1114

  56. Yan Y, Ren W, Guo Y, Wang R, Cao X (2017) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4003–4011

  57. You YL, Kaveh M (1999) Blind image restoration by anisotropic regularization. IEEE Trans Image Process 8(3):396

    Article  Google Scholar 

  58. Yu J, Chang Z, Xiao C (2019) Multimedia tools and applications. Springer 78(13):18549

    Google Scholar 

  59. Zha Z, Yuan X, Zhou J, Zhu C, Wen B (2020) Image restoration via simultaneous nonlocal self-similarity priors. IEEE Trans Image Process 29:8561

    Article  MATH  Google Scholar 

  60. Zuo W, Ren D, Zhang D, Gu S, Zhang L (2016) Learning iteration-wise generalized shrinkage?thresholding operators for blind deconvolution. IEEE Trans Image Process 25(4):1751

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank VGST K-FIST L2 for sponsored “Establishment of Renewable Smart Grid Laboratory”, JSS Academy of Technical Education, K.S. Institute of Technology and VTU for their constant support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallikarjunaswamy S.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, P., S, M. & N, S. Image region driven prior selection for image deblurring. Multimed Tools Appl 82, 24181–24202 (2023). https://doi.org/10.1007/s11042-023-14335-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14335-y

Keywords

Navigation