Skip to main content
Log in

The practical applications of HLBP texture descriptor

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The traditional Local binary pattern (LBP) compares the central pixel with all 8-neighboring pixels in a 3 × 3 pixel window to generate LBP codes. However, its circular structure may result in similar LBP codes for different structural patterns. The technique also resulted in high-dimensional feature vectors, which cause a computational burden. Researchers have proposed several LBP variants; however, none of them addressed the aforementioned issues. This paper proposes a Hyperbolic local binary pattern (HLBP) that follows the hyperbolic structure to extract the discriminative features. In particular, HLBP combines 3 × 5 Horizontal hyperbolic-LBP (HHLBP) and 5 × 3 Vertical hyperbolic-LBP (VHLBP) movements. Experiments are conducted on facial and texture image databases to test the robustness of HLBP. The experiment outcomes demonstrate that HLBP with comparative low-dimensional feature vector outperforms the state-of-the-art descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Five publicly databases are analysed during the current study. These databases include AT&T [1], GT [18], JAFFE [45], IFDB [15], and Brodatz [12]. The link to these databases are available in the reference section.

References

  1. AT&T laboratories Cambridge (2008) The AT&T database of faces, available online: (http://www.uk.research.att.com/facedatabase.html)

  2. Ahmed F, Hossain E, Hossain Bari ASM, Shihavuddin ASM (2011) Compound local binary pattern (Clbp) for robust facial expression recognition. In: 2011 IEEE 12th international symposium on computational intelligence and informatics (CINTI). IEEE, pp 391–395

  3. Al-halafawy WS, Tawfiq MZ (2014) The relationship between types of image retrieval and cognitive style in developing visual thinking skills. Life Sci J 11(9):865–879

    Google Scholar 

  4. Amirkhani D, Bastanfard A (2021) An objective method to evaluate exemplar-based inpainted images quality using jaccard index. Multimed Tools Appl 80(17):26199–26212

    Article  Google Scholar 

  5. Arora N, Ashok A, Tiwari S (2019) Efficient image retrieval through hybrid feature set and neural network. Int J Image, Graph Signal Process, vol 11(1)

  6. Bastanfard A, Bastanfard O, Takahashi H, Nakajima M (2004) Toward anthropometrics simulation of face rejuvenation and skin cosmetic. Comput Anim Virtual Worlds 15(3-4):347–352

    Article  Google Scholar 

  7. Bastanfard A, Karam H, Takahashi H, Nakajima M (2001) Visualization of realistic human facial aging and human skin senility. In: ITE technical report 25.64, pp 65–70. The institute of image information and television engineers

  8. Bastanfard A, Takahashi H, Nakajima M (2004) Toward e-appearance of human face and hair by age, expression and rejuvenation. In: 2004 International conference on Cyberworlds. IEEE, pp 306–311

  9. Bedi AK, Sunkaria RK (2020) Local tetra-directional pattern–a new texture descriptor for content-based image retrieval. Pattern Recognit Image Anal 30(4):578–592

    Article  Google Scholar 

  10. Bhowmik MK, Shil S, Saha P (2013) Feature points extraction of thermal face using harris interest point detection. Proc Technol 10:724–730

    Article  Google Scholar 

  11. Bicego M, Lagorio A, Grosso E, Tistarelli M (2006) On the use of sift features for face authentication. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06). IEEE, pp 35–35

  12. Brodatz’s texture database (2020) Available: (https://multibandtexture.recherche.usherbrooke.ca/.)

  13. Das A, Ghoshal D (2012) Human eye detection of color images based on morphological segmentation using modified harris corner detector. In: 2012 International conference on emerging trends in electrical engineering and energy management (ICETEEEM). IEEE, pp 143–147

  14. Dehshibi MM, Bastanfard A (2010) A new algorithm for age recognition from facial images. Signal Process 90(8):2431–2444

    Article  MATH  Google Scholar 

  15. Dehshibi MM, Nik MA, Bastanfard A (2007) Iranian Face Database (IFDB) - version 1. (https://data.mendeley.com/datasets/5b4chtvj4g/1)

  16. Deng J, Guo J, Xue N, Zafeiriou S (2019) Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4690–4699

  17. Dubey SR, Mukherjee S (2020) Ldop: local directional order pattern for robust face retrieval. Multimed Tools Appl 79(9):6363–6382

    Article  Google Scholar 

  18. GeorgiaTech (2018) Georgia tech face database. computer vision online. (http://www.anefian.com/research/face_reco.htm)

  19. Gudivada VN, Raghavan VV (1995) Content based image retrieval systems. Computer 28(9):18–22

    Article  Google Scholar 

  20. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19 (6):1657–1663

    Article  MathSciNet  MATH  Google Scholar 

  21. Hafiane A, Seetharaman G, Zavidovique B (2007) Median binary pattern for textures classification. In: International conference image analysis and recognition. Springer, pp 387–398

  22. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42(3):425–436

    Article  MATH  Google Scholar 

  23. Karanwal S (2021) An enhanced local descriptor (eld) for face recognition. In: 2021 Third international conference on inventive research in computing applications (ICIRCA). IEEE, pp 877–882

  24. Karanwal S (2021) Graph based structure binary pattern for face analysis. Optik 241:166965

    Article  Google Scholar 

  25. Karanwal S (2022) Robust local binary pattern for face recognition in different challenges. Multimed Tools Appl:1–17

  26. Karanwal S, Diwakar M (2021) Neighborhood and center difference-based-lbp for face recognition. Pattern Anal Appl 24(2):741–761

    Article  Google Scholar 

  27. Karanwal S, Diwakar M (2021) Od-lbp: orthogonal difference-local binary pattern for face recognition. Digital Signal Process 110:102948

    Article  Google Scholar 

  28. Karanwal S, Diwakar M (2021) Two novel color local descriptors for face recognition. Optik 226:166007

    Article  Google Scholar 

  29. Li Z-M, Huang Z-H, Li W-J (2019) Recognition of colored face, based on an improved color local binary pattern. Int J Pattern Recognit Artif Intell 33(04):1956004

    Article  MathSciNet  Google Scholar 

  30. Li L, Lao S, Fieguth PW, Guo Y, Wang X, Pietikäinen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381

    Article  MathSciNet  MATH  Google Scholar 

  31. Li L, Zhao L, Long Y, Kuang G, Fieguth P (2012) Extended local binary patterns for texture classification. Image Vis Comput 30(2):86–99

    Article  Google Scholar 

  32. Liao S, Chung ACS (2007) Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude. In: Asian conference on computer vision. Springer, pp 672–679

  33. Liu B, Deng W, Zhong Y, Wang M, Hu J, Tao X, Huang Y (2019) Fair loss: margin-aware reinforcement learning for deep face recognition. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 10052–10061

  34. Martolia M, Dhanore N, Singh A, Shahare V, Arora N (2020) A modified local binary pattern (lbp) for content-based image retrieval. Int J Adv Sci Technol 29(1):1630–1644

    Google Scholar 

  35. Modhej N, Bastanfard A, Teshnehlab M, Raiesdana S (2020) Pattern separation network based on the hippocampus activity for handwritten recognition. IEEE Access 8:212803–212817

    Article  Google Scholar 

  36. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  MATH  Google Scholar 

  37. Nguyen H-T, Caplier A (2012) Elliptical local binary patterns for face recognition. In: Asian conference on computer vision. Springer, pp 85–96

  38. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59

    Article  Google Scholar 

  39. Sasaki Y et al (2007) The truth of the f-measure. 2007. https://www.cs.odu.edu/mukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf. Accessed 26 May 2021

  40. Shunqing X, Weihong Z, Wei X (2012) Optimization of harris corner detection algorithm. In: Advances in control and communication. Springer, pp 59–64

  41. Singhal A, Agarwal M, Pachori RB (2021) Directional local ternary co-occurrence pattern for natural image retrieval. Multimed Tools Appl 80(10):15901–15920

    Article  Google Scholar 

  42. Sucharitha D, Senapati R (2018) Optimized image retrieval using hsv color space, local edge binary patterns and zernike moments. J Eng Appl Sci 13:6777–6786

    Google Scholar 

  43. Sucharitha G, Senapati RK (2020) Biomedical image retrieval by using local directional edge binary patterns and zernike moments. Multimed Tools Appl 79(3):1847–1864

    Article  Google Scholar 

  44. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  45. The Japanese female facial expression (JAFFE) Dataset (1998) Lyons, michael and kamachi, miyuki and gyoba, jiro. (https://zenodo.org/record/3451524#.YXUQYFVBzIU.)

  46. Verma M, Raman B (2016) Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digital Signal Process 51:62–72

    Article  MathSciNet  Google Scholar 

  47. Verma Ma, Raman B (2018) Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimed Tools Appl 77(10):11843–11866

    Article  Google Scholar 

  48. Wang X, Wang S, Wang J, Shi H, Mei T (2019) Co-mining: deep face recognition with noisy labels. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9358–9367

  49. Wiskott L, Krüger N, Kuiger N, Malsburg CVD (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19(7):775–779

    Article  Google Scholar 

  50. Zhang B, Gao Y, Zhao S, Liu J (2009) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhou N, Constantinides AG, Huang G, Zhang S (2018) Face recognition based on an improved center symmetric local binary pattern. Neural Comput Appl 30(12):3791–3797

    Article  Google Scholar 

Download references

Acknowledgements

The pattern research center in Iran is to be thanked by the authors for providing the IFDB face image database. The editors and anonymous reviewers provided insightful comments and helpful ideas that have been included into this manuscript with thanks from the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Arora.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Sharma, S.C. The practical applications of HLBP texture descriptor. Multimed Tools Appl 82, 29379–29404 (2023). https://doi.org/10.1007/s11042-023-14406-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14406-0

Keywords

Navigation