Skip to main content
Log in

Skin cancer detection and classification based on differential analyzer algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Skin cancer is one of the world’s scariest diseases, having taken the lives of thousands of people. It can be treated if diagnosed at the right time. According to WHO, every year, approximately 3 million non-melanoma and 130,000 malignant melanomas occur worldwide. Many existing technologies have demonstrated that computer-aided systems can be useful in the early identification of cancer. One of the major challenges in computer-aided diagnostic systems is accurate segmentation of the lesion and extraction of features for successful classification and detection. The study’s main goal is to recognize and segment cancerous parts of skin from the collected samples and then categorize them into separate affected and non-affected regions. The proposed model first performs the identification and separation of infected regions from the sample. This is performed by converting the RGB cell image into a greyscale colour scale. The background subtraction approach is used to track only cell structures from the image by eliminating the background, and region props are applied for segmentation from skin images. In the second phase, features from the segmented images are extracted. These features include homogeneity, contrast, energy, correlation, and some hybrid features. In the third phase, the differential analyzer approach (DAA) algorithm is used to select the significant features. In the final phase, the efficiency of the suggested optimization method is validated using different classifiers. The suggested methodology is applied to an ISIC 2018 dataset available. This result outperforms all other published papers that used the same dataset. Classification accuracy is notably higher in comparison to other approaches not following the DAA optimization algorithm. Validation of results is further extended through feature reduction ratio and still remarkable results concerning classification accuracy of 96% are achieved. The validity of the approach is examined using different classifiers including KNN, SVM, Naïve Bayes, decision tree, and random forest-based mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abbas Q, Garcia IF, Emre Celebi M, Ahmad W, Mushtaq Q (2013) A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images. Skin Res Technol 19(1):1–8. https://doi.org/10.1111/j.1600-0846.2012.00670.x

    Article  Google Scholar 

  2. Abuzaghleh O, Barkana BD, Faezipour M (2015) Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J Transl Eng Health Med 3:1–12

    Article  Google Scholar 

  3. Ahmed Thaajwer MA, Piumi Ishanka UA (2020) Melanoma skin cancer detection using image processing and machine learning techniques. ICAC 2020 - 2nd Int Conf Adv Comput Proc, pp. 363–368. https://doi.org/10.1109/ICAC51239.2020.9357309.

  4. Albert BA (2020) Deep learning from limited training data: novel segmentation and ensemble algorithms applied to automatic melanoma diagnosis. IEEE Access 8:31254–31269. https://doi.org/10.1109/ACCESS.2020.2973188

    Article  Google Scholar 

  5. Al-masni MA, Al-antari MA, Choi M-T, Han S-M, Kim T-S (2018) Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Prog Biomed 162:221–231. https://doi.org/10.1016/j.cmpb.2018.05.027

    Article  Google Scholar 

  6. American Cancer Society (2021) About melanoma skin cancer what is melanoma skin cancer? https://www.cancer.org/content/dam/CRC/PDF/Public/8823.00.pdf, pp. 1–14

  7. Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D (2017) Epidemiological trends in skin cancer. Dermatol Pract Concept 7(2):1–6. https://doi.org/10.5826/dpc.0702a01

  8. Aswin RB, Jaleel JA, Salim S (2014) Hybrid genetic algorithm - Artificial neural network classifier for skin cancer detection. 2014 Int. Conf. Control. Instrumentation, Commun. Comput. Technol. ICCICCT 2014, pp. 1304–1309. https://doi.org/10.1109/ICCICCT.2014.6993162

  9. Ballerini L, Fisher RB, Aldridge B, Rees J (2013) A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. Lect Notes Comput Vis Biomech 6:63–86. https://doi.org/10.1007/978-94-007-5389-1_4

    Article  Google Scholar 

  10. Barata C, Marques JS, Rozeira J (2012) A system for the detection of pigment network in dermoscopy images using directional filters. IEEE Trans Biomed Eng 59(10):2744–2754. https://doi.org/10.1109/TBME.2012.2209423

    Article  Google Scholar 

  11. Barata C, Ruela M, Francisco M, Mendonca T, Marques JS (2014) Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J 8(3):965–979. https://doi.org/10.1109/JSYST.2013.2271540.M

    Article  Google Scholar 

  12. Blundo A, Cignoni A, Banfi T, Ciuti G (2021) Comparative analysis of diagnostic techniques for melanoma detection: A systematic review of diagnostic test accuracy studies and meta-analysis. Front Med 8:637069. https://doi.org/10.3389/fmed.2021.637069

    Article  Google Scholar 

  13. Britanak V, Yip P, Rao KR (2007) Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations. Academic Press Inc., Elsevier Science, Amsterdam, 

  14. Buemi A, Bruna A, Mancuso M, Capra A, Spampinato G (2010) Chroma noise reduction in DCT domain using soft-thresholding. Eurasip J Image Video Process 2010:1–13. https://doi.org/10.1155/2010/323180

    Article  Google Scholar 

  15. Caie PD, Dimitriou N, Arandjelović O (2021) Precision medicine in digital pathology via image analysis and machine learning. Artif Intell Deep Learn Pathol:149–173. https://doi.org/10.1016/b978-0-323-67538-3.00008-7

  16. Carrera EV, Ron-Dominguez D (2018) A computer-aided diagnosis system for skin cancer detection. 4th International Conference on Technology Trends. In: Botto-Tobar M, Pizarro G, Zúñiga-Prieto M, D’Armas M, Zúñiga Sánchez M (eds.) Technology Trends. CITT 2018. Communications in Computer and Information Science, vol 895, Springer, Cham, pp 553–563.https://doi.org/10.1007/978-3-030-05532-5_42

  17. Celebi ME, Iyatomi H, Schaefer G, Stoecker WV (2009) Lesion border detection in dermoscopy images. Comput Med Imaging Graph 33(2):148–153. https://doi.org/10.1016/j.compmedimag.2008.11.002

    Article  Google Scholar 

  18. Choudhari S, Biday S (2014) Artificial neural network for skin cancer detection. Int J Emerg Trends Technol Comput Sci (IJETTCS) 3(5):147–153

  19. Codella NCF et al (2017) Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev 61(4–5):1–15

    Google Scholar 

  20. Codella NCF et al. (2018) Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC), Proc - Int Symp Biomed Imaging, vol. 2018-April, no. Isbi, pp. 168–172. https://doi.org/10.1109/ISBI.2018.8363547.

  21. Dhane DM, Maity M, Achar A, Bar C, Chakraborty C (2015) Selection of optimal Denoising filter using quality assessment for potentially lethal optical wound images. Procedia Comput Sci 58:438–446. https://doi.org/10.1016/j.procs.2015.08.059

    Article  Google Scholar 

  22. Dhane DM, Krishna V, Achar A, Bar C (2016) Spectral clustering for unsupervised segmentation of lower extremity wound beds using optical images. J Med Syst 40(9):1–10. https://doi.org/10.1007/s10916-016-0554-x

    Article  Google Scholar 

  23. Flores-Vidal PA, Olaso P, Gómez D, Guada C (2019) A new edge detection method based on global evaluation using fuzzy clustering. Soft Comput 23(6):1809–1821. https://doi.org/10.1007/s00500-018-3540-z

    Article  Google Scholar 

  24. Geller AC, Clapp RW, Sober AJ, Gonsalves L, Mueller L, Christiansen CL, Shaikh W, Miller DR (2013) Melanoma epidemic: an analysis of six decades of data from the Connecticut tumor registry. J Clin Oncol 31(33):4172–4178. https://doi.org/10.1200/JCO.2012.47.3728

    Article  Google Scholar 

  25. Giotis I, Molders N, Land S, Biehl M, Jonkman MF, Petkov N (2015) MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst Appl 42(19):6578–6585. https://doi.org/10.1016/j.eswa.2015.04.034

    Article  Google Scholar 

  26. Glazer AM, Rigel DS, Winkelmann RR, Farberg AS (2017) Clinical diagnosis of skin Cancer: enhancing inspection and early recognition. Dermatol Clin 35(4):409–416. https://doi.org/10.1016/j.det.2017.06.001

    Article  Google Scholar 

  27. Gonzalez-Correa CA, Tapasco-Tapasco LO, Salazar-Gomez S (2020) Three electrode arrangements for the use of contralateral body segments as controls for electrical bio-impedance measurements in three medical conditions. IFMBE Proc 72:113–119. https://doi.org/10.1007/978-981-13-3498-6_17

    Article  Google Scholar 

  28. Gulati S, Bhogal RK (2019) Detection of malignant melanoma using deep learning, vol 1045. Springer, Singapore

    Google Scholar 

  29. Hasan MK, Elahi MTE, Alam MA, Jawad MT, Martí R (2022) DermoExpert: skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation. Inf Med Unlocked 28:100819. https://doi.org/10.1016/j.imu.2021.100819

    Article  Google Scholar 

  30. Heibel HD, Hooey L, Cockerell CJ (2020) A review of noninvasive techniques for skin Cancer detection in dermatology. Am J Clin Dermatol 21(4):513–524. https://doi.org/10.1007/s40257-020-00517-z

    Article  Google Scholar 

  31. Hekler A, Utikal JS, Enk AH, Hauschild A, Weichenthal M, Maron RC, Berking C, Haferkamp S, Klode J, Schadendorf D, Schilling B, Holland-Letz T, Izar B, von Kalle C, Fröhling S, Brinker TJ, Schmitt L, Peitsch WK, Hoffmann F, … Thiem A (2019) Superior skin cancer classification by the combination of human and artificial intelligence. Eur J Cancer 120:114–121. https://doi.org/10.1016/j.ejca.2019.07.019

    Article  Google Scholar 

  32. Höhn J, Krieghoff-Henning E, Jutzi TB, von Kalle C, Utikal JS, Meier F, Gellrich FF, Hobelsberger S, Hauschild A, Schlager JG, French L, Heinzerling L, Schlaak M, Ghoreschi K, Hilke FJ, Poch G, Kutzner H, Heppt MV, Haferkamp S, … Brinker TJ (2021) Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification. Eur J Cancer 149:94–101. https://doi.org/10.1016/j.ejca.2021.02.032

    Article  Google Scholar 

  33. Jaworek-Korjakowska J (2016) Computer-aided diagnosis of micro-malignant melanoma lesions applying support vector machines. Biomed Res Int 2016:4381972. https://doi.org/10.1155/2016/4381972

    Article  Google Scholar 

  34. Jiang A, Jefferson IS, Robinson SK, Griffin D, Adams W, Speiser J, Winterfield L, Peterson A, Tung-Hahn E, Lee K, Surprenant D, Coakley A, Tung R, Alam M (2021) International journal of women ’ s dermatology skin cancer discovery during total body skin examinations. Int J Women’s Dermatol 7(4):411–414. https://doi.org/10.1016/j.ijwd.2021.05.005

    Article  Google Scholar 

  35. Kassem MA, Hosny KM, Fouad MM (2020) Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access 8:114822–114832. https://doi.org/10.1109/ACCESS.2020.3003890

    Article  Google Scholar 

  36. Kato J, Horimoto K, Sato S, Minowa T, Uhara H (2019) Dermoscopy of melanoma and non-melanoma skin cancers. Front Med 6:180. https://doi.org/10.3389/fmed.2019.00180.American Cancer Society (2018) Cancer Facts & Figures 2018. American Cancer Society Atlanta

    Article  Google Scholar 

  37. Khan MU, Beg MR, Khan MZ (2012) Improved line drawing algorithm: An approach and proposal, no. November, pp. 322–327. https://doi.org/10.3850/978-981-07-1403-1_713

  38. Khan MQ, Hussain A, Rehman S, Khan U, Maqsood M (2019) Classification of melanoma and nevus in digital images for diagnosis of skin cancer. IEEE Access 7:90132–90144. https://doi.org/10.1109/ACCESS.2019.2926837

    Article  Google Scholar 

  39. Khan NH et al (2022) Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 36:223–247. https://doi.org/10.1016/j.jare.2021.06.014

    Article  Google Scholar 

  40. Lee H, Chen YPP (2014) Skin cancer extraction with optimum fuzzy thresholding technique. Appl Intell 40(3):415–426. https://doi.org/10.1007/s10489-013-0474-0

    Article  Google Scholar 

  41. Lee T, Ng V, Gallagher R, Coldman A, McLean D (1997) Dullrazor®: a software approach to hair removal from images. Comput Biol Med 27(6):533–543. https://doi.org/10.1016/S0010-4825(97)00020-6

    Article  Google Scholar 

  42. Linsangan NB, Adtoon JJ (2018) Skin cancer detection and classification for moles using K-nearest neighbor algorithm. ACM Int Conf Proc Ser:47–51. https://doi.org/10.1145/3309129.3309141

  43. Mahbod A, Schaefer G, Wang C, Dorffner G, Ecker R, Ellinger I (2020) Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Comput Methods Prog Biomed 193:105475. https://doi.org/10.1016/j.cmpb.2020.105475

    Article  Google Scholar 

  44. Maity M, et al. (2018) Selection of colour correction algorithms for calibrating optical chronic ulcer images. Advanced Computational and Communication Paradigms. Springer, Singapore, 561–570

  45. Marin-Gomez FX, Vidal-Alaball J, Poch PR, Sariola CJ, Ferrer RT, Peña JM (2020) Diagnosis of skin lesions using photographs taken with a mobile phone: An online survey of primary care physicians. J Prim Care Community Health 11:2150132720937831. https://doi.org/10.1177/2150132720937831

    Article  Google Scholar 

  46. Masood A, Al-Jumaily AA (2013) Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms. Int J Biomed Imaging 2013:323268. https://doi.org/10.1155/2013/323268

    Article  Google Scholar 

  47. Masood A, Al-jumaily A, Anam K (2014) Texture analysis based automated decision support system for classification of skin cancer using SA-SVM. Lect Notes Comput Sci 8835:101–109

  48. Menzies SW, Emery J, Staples M, Davies S, McAvoy B, Fletcher J, Shahid KR, Reid G, Avramidis M, Ward AM, Burton RC, Elwood JM (2009) Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial. Br J Dermatol 161(6):1270–1277. https://doi.org/10.1111/j.1365-2133.2009.09374.x

    Article  Google Scholar 

  49. Monika MK, Vignesh NA, Kumari CU, MNVSS K, Lydia EL (2020) Skin cancer detection and classification using machine learning. Mater Today Proc 33:4266–4270. https://doi.org/10.1016/j.matpr.2020.07.366

    Article  Google Scholar 

  50. Murugan A, Nair SAH, Kumar KPS (2019) Detection of skin cancer using SVM, random forest and kNN classifiers. J Med Syst 43(8):1–9. https://doi.org/10.1007/s10916-019-1400-8

    Article  Google Scholar 

  51. Murugan A, Nair SAH, Preethi AAP, Kumar KPS (2021) Diagnosis of skin cancer using machine learning techniques. Microprocess Microsyst 81:103727. https://doi.org/10.1016/j.micpro.2020.103727

    Article  Google Scholar 

  52. Narayanamurthy V, Padmapriya P, Noorasafrin A, Pooja B, Hema K, Firus Khan A'Y, Nithyakalyani K, Samsuri F (2018) Skin cancer detection using non-invasive techniques. RSC Adv 8(49):28095–28130. https://doi.org/10.1039/c8ra04164d

    Article  Google Scholar 

  53. Panigrahi R, Borah S (2019) Classification and analysis of Facebook metrics dataset using supervised classifiers. Elsevier Inc

    Book  Google Scholar 

  54. Pathan S, Prabhu KG, Siddalingaswamy PC (2018) Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—a review. Biomed Signal Process Control 39:237–262. https://doi.org/10.1016/j.bspc.2017.07.010

    Article  Google Scholar 

  55. Perez F, Vasconcelos C, Avila S, Valle E (2018) Data augmentation for skin lesion analysis,” Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics), vol. 11041 LNCS, pp. 303–311. https://doi.org/10.1007/978-3-030-01201-4_33

  56. Premaladha J, Ravichandran KS (2016) Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J Med Syst 40(4):1–12. https://doi.org/10.1007/s10916-016-0460-2

    Article  Google Scholar 

  57. Rajan BK, Harshan HM, Venugopal G (2020) Venugopal, veterinary image enhancement using DWTDCT and singular valuedecomposition. In: Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing,ICCSP 2020, pp 920–924. https://doi.org/10.1109/ICCSP48568.2020.9182414

  58. Rostami M, Berahmand K, Forouzandeh S (2021) A novel community detection based genetic algorithm for feature selection. J Big Data 8(1):1–27. https://doi.org/10.1186/s40537-020-00398-3

    Article  Google Scholar 

  59. Ruela M, Barata C, Marques JS, Rozeira J (2017) A system for the detection of melanomas in dermoscopy images using shape and symmetry features. Comput Methods Biomech Biomed Eng Imaging Vis 5(2):127–137. https://doi.org/10.1080/21681163.2015.1029080

    Article  Google Scholar 

  60. Saghir U, Devendran V (2021) “A brief review of feature extraction methods for melanoma detection. 2021 7th Int. Conf Adv Comput Commun Syst ICACCS 2021, pp. 1304–1307. https://doi.org/10.1109/ICACCS51430.2021.9441787.

  61. Satheesha TY, Satyanarayana D, Prasad MNG, Dhruve KD (2017) Melanoma is skin deep: A 3D reconstruction technique for computerized dermoscopic skin lesion classification. IEEE J Transl Eng Heal Med 5:1–17. https://doi.org/10.1109/JTEHM.2017.2648797

    Article  Google Scholar 

  62. Serte S, Demirel H (2019) Gabor wavelet-based deep learning for skin lesion classification. Comput Biol Med 113:103423. https://doi.org/10.1016/j.compbiomed.2019.103423

    Article  Google Scholar 

  63. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

  64. Singh N, Gupta SK (2019) Recent advancement in the early detection of melanoma using computerized tools: an image analysis perspective. Skin Res Technol 25(2):129–141. https://doi.org/10.1111/srt.12622

    Article  Google Scholar 

  65. Singh D, Singh B (2020) Investigating the impact of data normalization on classification performance. Appl Soft Comput 97:105524. https://doi.org/10.1016/j.asoc.2019.105524

    Article  Google Scholar 

  66. Smaoui N, Derbel N (2018) Simple but efficient approach for image based skin cancer diagnosis. 2018 15th Int. Multi-Conference Syst. Signals Devices, SSD 2018, pp. 274–280. https://doi.org/10.1109/SSD.2018.8570526.

  67. Taunk K, De S, Verma S, Swetapadma A (2019) A brief review of nearest neighbor algorithm for learning and classification. 2019 Int Conf Intell Comput Control Syst ICCS 2019, no. May 2019, pp. 1255–1260. https://doi.org/10.1109/ICCS45141.2019.9065747.

  68. Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GR (2021) The global burden of skin cancer: a longitudinal analysis from the global burden of disease study, 1990–2017. JAAD Int 2:98–108. https://doi.org/10.1016/j.jdin.2020.10.013

    Article  Google Scholar 

  69. Vestergaard E, Macaskill P, Holt PE, Menzies SW (2008) Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br J Dermatol 159(3):669–676. https://doi.org/10.1111/j.1365-2133.2008.08713.x

    Article  Google Scholar 

  70. Wu X, Hammer JA (2014) Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol 29(1):1–7. https://doi.org/10.1016/j.ceb.2014.02.003

    Article  Google Scholar 

  71. Wu S, Cho E, Li WQ, Weinstock MA, Han J, Qureshi AA (2016) History of severe sunburn and risk of skin Cancer among women and men in 2 prospective cohort studies. Am J Epidemiol 183(9):824–833. https://doi.org/10.1093/aje/kwv282

    Article  Google Scholar 

  72. Xie F, Fan H, Li Y, Jiang Z, Meng R, Bovik A (2017) Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Trans Med Imaging 36(3):849–858. https://doi.org/10.1109/TMI.2016.2633551

    Article  Google Scholar 

  73. Zhang Y (2012) Support vector machine classification algorithm and its application. Commun Comput Inf Sci, vol. 308 CCIS, no. PART 2, pp. 179–186. https://doi.org/10.1007/978-3-642-34041-3_27

  74. Zhang J, Xie Y, Xia Y, Shen C (2019) Attention residual learning for skin lesion classification. IEEE Trans Med Imaging 38(9):2092–2103. https://doi.org/10.1109/TMI.2019.2893944

    Article  Google Scholar 

  75. Zhou H, Schaefer G, Celebi ME, Lin F, Liu T (2011) Gradient vector flow with mean shift for skin lesion segmentation. Comput Med Imaging Graph 35(2):121–127. https://doi.org/10.1016/j.compmedimag.2010.08.002

    Article  Google Scholar 

  76. Zortea M, Flores E, Scharcanski J (2017) A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recogn 64:92–104. https://doi.org/10.1016/j.patcog.2016.10.031

    Article  Google Scholar 

Download references

Acknowledgements

I am very thankful to my new PhD supervisor Dr. Shailendra Kumar Singh, Assistant Professor, LPU, Punjab, India for his continuous support in the revision, restructuring, and proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzma Saghir.

Ethics declarations

There are no conflicts of interest and the research is not funded by any organisation/institute. The infrastructure and support are provided by Lovely Professional University where my PhD is going on.

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saghir, U., Hasan, M. Skin cancer detection and classification based on differential analyzer algorithm. Multimed Tools Appl 82, 41129–41157 (2023). https://doi.org/10.1007/s11042-023-14409-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14409-x

Keywords

Navigation