Skip to main content
Log in

M-AResNet: a novel multi-scale attention residual network for melting curve image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Melting curve image is a hallmark of quantitative polymerase chain reaction and is a crucial indicator for the validity of the cycle threshold. Current mainstream methods concentrate on analyzing the melting curve images via artificial process. Therefore, we design a novel multi-scale attention residual network, leveraging various levels space features for accurately classifying the melting curve images. Two modular components are designed in our algorithm. A multi-scale feature extraction module that consists of multi-parallel attention resnet units to selectively capture close related information from various scale feature maps while a series of adaptive multi-scale fusion modules to complete cross-subnet fusion of information. In addition, we also collect massive fluorescence signal data to draw melting curve images for constructing a novel dataset. Our method is evaluated on 3 different benchmark datasets including the self-constructed melting curve image dataset, heartbeat signal dataset and natural color image dataset, a significant highlight is that it achieves a 2.0% accuracy improvement over state-of-the-art in average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, Li X, Alston BM, Li B, Clowes R et al (2020) A mobile robotic chemist. Nature 583:237–241. https://doi.org/10.1038/s41586-020-2442-2

    Article  Google Scholar 

  2. Chakraborty C, Kishor A (2022) Real-time cloud-based patient-centric monitoring using computational health systems. IEEE Trans Comput Social Syst. https://doi.org/10.1109/TCSS.2022.3170375

  3. Chakraborty C, Kishor A, Rodrigues JJ (2022) Novel enhanced-grey wolf optimization hybrid machine learning technique for biomedical data computation. Comput Electr Eng 99:107778. https://doi.org/10.1016/j.compeleceng.2022.107778

    Article  Google Scholar 

  4. Chen X, Cheng Z, Wang S, Lu G, Xv G, Liu Q, Zhu X (2021) Atrial fibrillation detection based on multi-feature extraction and convolutional neural network for processing ecg signals. Comput Methods Programs Biomed 202:106009. https://doi.org/10.1016/j.cmpb.2021.106009

    Article  Google Scholar 

  5. Chen Y, Zhang G, Bai M, Zu S, Guan Z, Zhang M (2019) Automatic waveform classification and arrival picking based on convolutional neural network. Earth Space Sci 6(7):1244–1261. https://doi.org/10.1029/2018EA000466

    Article  Google Scholar 

  6. Coffey KR, Marx RG, Neumaier JF (2019) Deepsqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44:859–868. https://doi.org/10.1038/s41386-018-0303-6

    Article  Google Scholar 

  7. Darmawahyuni A, Nurmaini S, Yuwandini M, Rachmatullah MN, Firdaus F, Tutuko B (2020) Congestive heart failure waveform classification based on short time-step analysis with recurrent network. Inform Med Unlocked 21:100441. https://doi.org/10.1016/j.imu.2020.100441

    Article  Google Scholar 

  8. Dawodi M, Baktash JA, Wada T, Alam N, Joya MZ (2020) Dari speech classification using deep convolutional neural network. In: IEEE International IOT, electronics and mechatronics conference, pp 1–4, DOI https://doi.org/10.1109/IEMTRONICS51293.2020.9216370

  9. Divya B, Subramaniam K, Nanjundaswamy H (2020) Human epithelial type-2 cell image classification using an artificial neural network with hybrid descriptors. IETE J Res 66(1):30–41. https://doi.org/10.1080/03772063.2018.1474810

    Article  Google Scholar 

  10. Duta IC, Liu L, Zhu F, Shao L (2020) Improved residual networks for image and video recognition. In: International conference on pattern recognition, pp 9415–9422

  11. Fki Z, Ammar B, Ayed MB (2021) Optimization of residual convolutional neural network for electrocardiogram classification. arXiv:2112.06024

  12. Fu Q, Xiang L, Zhao K-G, Chen L-Q (2022) Identification and validation of suitable reference genes for quantitative real-time pcr studies in adiantum reniforme var. sinense. J Plant Biochem Biotechnol:1–6. https://doi.org/10.1007/s13562-021-00763-0

  13. Giuste FO, Vizcarra JC (2020) Cifar-10 image classification using feature ensembles. arXiv:2002.03846

  14. Gong Z, Zhong P, Yu Y, Hu W, Li S (2019) A CNN with multiscale convolution and diversified metric for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(6):3599–3618. https://doi.org/10.1109/TGRS.2018.2886022

    Article  Google Scholar 

  15. Guo Q, Yu X, Ruan G (2019) Lpi radar waveform recognition based on deep convolutional neural network transfer learning. Symmetry 11(4):540. https://doi.org/10.3390/sym11040540

    Article  Google Scholar 

  16. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. European Conf Comput Vision 9908:630–645

    Google Scholar 

  17. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, pp 770–778

  18. Hou C-Y, Xu T, Zhang L-H, Cui J-T, Zhang Y-H, Li X-S, Zheng L-L, Chen H-Y (2021) Simultaneous detection and differentiation of porcine circovirus 3 and 4 using a sybr green based duplex quantitative pcr assay. J Virol Methods 293:114152. https://doi.org/10.1016/j.jviromet.2021.114152

    Article  Google Scholar 

  19. Howard A, Sandler M, Chu G, Chen L-C, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V et al (2019) Searching for mobilenetv3. In: IEEE international conference on computer vision, pp 1314–1324

  20. Hua W, Zhang C, Xie W, Jin X (2022) Polarimetric SAR image classification based on ensemble dual-branch CNN and superpixel algorithm. IEEE J Sel Top Appl Earth Obs Remote Sens 15:2759–2772. https://doi.org/10.1109/JSTARS.2022.3162953

    Article  Google Scholar 

  21. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition, pp 4700–4708

  22. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv:1602.07360

  23. Jia Z, Lin Y, Wang J, Zhou R, Ning X, He Y, Zhao Y (2020) Graphsleepnet: adaptive spatial-temporal graph convolutional networks for sleep stage classification. Int Joint Conference Artif Intell:1324–1330

  24. Kishor A, Chakraborty C (2021) Artificial intelligence and internet of things based healthcare 4.0 monitoring system. Wirel Pers Commun:1–17. https://doi.org/10.1007/s11277-021-08708-5

  25. Kishor A, Chakraborty C, Jeberson W (2021) Reinforcement learning for medical information processing over heterogeneous networks. Multim Tools Appl 80(16):23983–24004. https://doi.org/10.1007/s11042-021-10840-0

    Article  Google Scholar 

  26. Kishor A, Chakraborty C, Jeberson W (2021) Intelligent healthcare data segregation using fog computing with internet of things and machine learning. Int J Eng Syst Model Simul 12(2-3):188–194. https://doi.org/10.1504/IJESMS.2021.115533

    Article  Google Scholar 

  27. Lab S (2021) Heartbeat signal dataset. https://tianchi.aliyun.com/dataset/dataDetail?dataId=94490

  28. Lynn HM, Pan SB, Kim P (2019) A deep bidirectional gru network model for biometric electrocardiogram classification based on recurrent neural networks. IEEE Access 7 145395–145405

  29. Mhathesh T, Andrew J, Sagayam KM, Henesey L (2021) A 3d convolutional neural network for bacterial image classification. Intell Big Data Technol Beyond Hype:419–431. https://doi.org/10.1007/978-981-15-5285-4_42

  30. Müştak İB, Kolukirik M (2021) Development of diagnostic quantitative real-time pcr for mycoplasma gallisepticum and mycoplasma synoviae. Etlik Veteriner Mikrobiyoloji Dergisi 32(1):40–44. https://doi.org/10.35864/evmd.874707

    Article  Google Scholar 

  31. Patel H, Upla KP (2022) A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network. Multim Tools Appl 81(1):695–714. https://doi.org/10.1007/s11042-021-11422-w

    Article  Google Scholar 

  32. Pereira-Gomez M, Fajardo A, Echeverria N, Lopez-Tort F, Perbolianachis P, Costabile A, Aldunate F, Moreno P, Moratorio G (2021) Evaluation of sybr green real time pcr for detecting sars-cov-2 from clinical samples. J Virol Methods 289:114035. https://doi.org/10.1016/j.jviromet.2020.114035

    Article  Google Scholar 

  33. Qiu T, Liu M, Zhou G, Wang L, Gao K (2019) An unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden Markov model. Energies 12 (13):2585. https://doi.org/10.3390/en12132585

    Article  Google Scholar 

  34. Ruijter JM, Barnewall RJ, Marsh IB, Szentirmay AN, Quinn JC, van Houdt R, Gunst QD, van den Hoff MJ (2021) Efficiency correction is required for accurate quantitative pcr analysis and reporting. Clin Chem 67(6):829–842. https://doi.org/10.1093/clinchem/hvab052

    Article  Google Scholar 

  35. Sarwinda D, Paradisa RH, Bustamam A, Anggia P (2021) Deep learning in image classification using residual network (resnet) variants for detection of colorectal cancer. Procedia Comput Sci 179:423–431. https://doi.org/10.1016/j.procs.2021.01.025

    Article  Google Scholar 

  36. Shang R, He J, Wang J, Xu K, Jiao L, Stolkin R (2020) Dense connection and depthwise separable convolution based CNN for polarimetric SAR image classification. Knowl Based Syst 194:105542. https://doi.org/10.1016/j.knosys.2020.105542

    Article  Google Scholar 

  37. Sharma M, Bhurane AA, Acharya UR (2022) An expert system for automated classification of phases in cyclic alternating patterns of sleep using optimal wavelet-based entropy features. Expert Syst:12939. https://doi.org/10.1111/exsy.12939

  38. Shi Y, Xu W, Zhang J, Li X (2022) Automated classification of ultrasonic signal via a convolutional neural network. Appl Sci 12(9):4179. https://doi.org/10.3390/app12094179

    Article  Google Scholar 

  39. Simonyan K, Zisserman A (2018) Very deep convolutional networks for large-scale image recognition. Int Conf Learning Representations 75:398–406

    Google Scholar 

  40. Sulistyono MT, Pane ES, Wibawa AD, Purnomo MH (2021) Analysis of eeg-based stroke severity groups clustering using k-means. In: 2021 International seminar on intelligent technology and its applications (ISITIA), pp 67–74. https://doi.org/10.1109/ISITIA52817.2021.9502250. IEEE

  41. Sun C, Chen C, Li W, Fan J, Chen W (2019) A hierarchical neural network for sleep stage classification based on comprehensive feature learning and multi-flow sequence learning. IEEE J Biomed Health Inform 24 (5):1351–1366. https://doi.org/10.1109/JBHI.2019.2937558

    Article  Google Scholar 

  42. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, pp 1–9

  43. Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV (2019) Mnasnet: platform-aware neural architecture search for mobile. In: IEEE conference on computer vision and pattern recognition, pp 2820–2828

  44. Wang X, Huang G, Ma C, Tian W, Gao J (2020) Convolutional neural network applied to specific emitter identification based on pulse waveform images. IET Radar, Sonar Navig 14(5):728–735. https://doi.org/10.1049/iet-rsn.2019.0456

    Article  Google Scholar 

  45. Xiong Z, Nash MP, Cheng E, Fedorov VV, Stiles MK, Zhao J (2018) Ecg signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol Meas 39(9):094006. https://doi.org/10.1088/1361-6579/aad9ed

    Article  Google Scholar 

  46. Yang M-D, Huang K-H, Tsai H-P (2020) Integrating mnf and hht transformations into artificial neural networks for hyperspectral image classification. Remote Sens 12(14):2327. https://doi.org/10.3390/rs12142327

    Article  Google Scholar 

  47. Yang Y, Hu Y, Zhang X, Wang S (2021) Two-stage selective ensemble of cnn via deep tree training for medical image classification. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3061147

  48. Yi X-Z, Wu L, Xiang L, Wang M-Y, Chen S-L, Shi Y-H, Liu X (2022) Screening of reference genes for quantitative real-time pcr in artemisia argyi. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China J Chin Materia Medica 47(3):659–667. https://doi.org/10.19540/j.cnki.cjcmm.20210919.101

    Article  Google Scholar 

  49. Yin B, Corradi F, Bohté S. M. (2021) Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks. Nature Mach Intell 3(10):905–913. https://doi.org/10.1038/s42256-021-00397-w

    Article  Google Scholar 

  50. Yongping L, Xinru Y, Bin W, Mindong C, Jiangting L, Haisheng Z, Qingfang W (2021) Cloning and selection evaluation of reference gene for quantitative real-time pcr in hibiscus esculentus l. J Nucl Agric Sci 35 (1):60. https://doi.org/10.11869/j.issn.100-8551.2021.01.0060

    Article  Google Scholar 

  51. Yu C, Han R, Song M, Liu C, Chang C (2022) Feedback attention-based dense CNN for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–16. https://doi.org/10.1109/TGRS.2021.3058549

    Article  Google Scholar 

  52. Yu H, Sun C, Yang X, Zheng S, Zou H (2019) Fuzzy support vector machine with relative density information for classifying imbalanced data. IEEE Trans Fuzzy Syst 27(12):2353–2367. https://doi.org/10.1109/TFUZZ.2019.2898371

    Article  Google Scholar 

  53. Zhang G, Lin C, Chen Y (2020) Convolutional neural networks for microseismic waveform classification and arrival picking. Geophysics 85(4):227–240. https://doi.org/10.1190/geo2019-0267.1

    Article  Google Scholar 

  54. Zhang J, Wu Y (2017) A new method for automatic sleep stage classification. IEEE Trans Biomed Circ Syst 11(5):1097–1110. https://doi.org/10.1109/TBCAS.2017.2719631

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (61876070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Chen.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, P., Shen, X., Chen, H. et al. M-AResNet: a novel multi-scale attention residual network for melting curve image classification. Multimed Tools Appl 82, 42961–42976 (2023). https://doi.org/10.1007/s11042-023-14694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14694-6

Keywords

Navigation