Skip to main content
Log in

New robust state estimation of 2D embedded descriptor systems in Roesser form with bounded disturbance using strict LMI approach

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the problems of robust \(H_{\infty }\) observer-based filtering for 2-dimensional (2D) embedded descriptor systems described by Roesser model with matrices that depend on time-invariant bounded uncertain parameters. By using the strict linear matrix inequalities (SLMI) approach and projection lemma,sufficient condition is established under which the 2D error embedded descriptor system is asymptotically sable and satisfies a predefined \(H_{\infty }\) performance index for time-invariant bounded uncertain parameters. The observer design is given in terms of strict linear matrix inequalities (SLMI). Numerical examples illustrate the effectiveness of the proposed filter design methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benhayoun M, Mesquine F, Benzaouia A (2013) Delay-dependent stabilizability of 2D delayed continuous systems with saturating control. Circuits Syst Signal Process. https://doi.org/10.1007/s00034-013-9585-4

  2. Benzaouia A, Hmamed A, Tadeo F (2016) Two-Dimensional Systems, from introduction to state of the art. Springer International Publishing 28. https://doi.org/10.1007/978-3-319-20116-0

  3. Boukili B, El Mallahi M, Amrani A et al (2022) A new approach for \(H_{\infty }\) deconvolution filtering of 2D systems described by the Fornasini–Marchesini and discrete moments. Pattern Anal Appli 25:63–76. https://doi.org/10.1007/s10044-021-01030-7

    Article  Google Scholar 

  4. Boukili B, El Mallahi M, El-Amrani A, Hmamed A, Boumhidi I (2021) \(H_{\infty }\) deconvolution filter for two-dimensional numerical systems using orthogonal moments, First published. https://doi.org/10.1002/oca.2730

  5. Boyd S, Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequality in systems and control theory. SIAM: Philadelphia, PA

  6. Cai C, Wang W, Zou Y (2004) A note on the internal stability for 2-D acceptable linear singular discrete systems. Multidimension Syst Signal Process 15:197–204

    Article  MATH  Google Scholar 

  7. Cheng SK, Loh NK, Cheok KC (1985) Design of observers for two-dimensional systems. In: 24th IEEE conference on decision and control. https://doi.org/10.1109/CDC.1985.268553

  8. De Souza C, Xie L, Coutinho D (2010) Robust \(h_{\infty }\) filtering for 2D discrete-time linear systems with convex bounded parameter uncertainty. Automatica 46(4):673–681

    Article  MathSciNet  MATH  Google Scholar 

  9. Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Article  Google Scholar 

  10. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  11. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

    Article  Google Scholar 

  12. Ding DW, Wang H, Li L (2020) \(H-/H{\infty }\) fault detection observer design for two-dimensional Roesser systems, Systems & Control Letters 82. https://doi.org/10.1007/s11045-014-0279-2

  13. Du C, Xie L, Soh Y (2000) \(H_{\infty }\) Filtering of 2D discrete systems. IEEE Trans Signal Process 48(6):1760–1768

    MATH  Google Scholar 

  14. El Mallahi M, Boukili B, Zouhri A, Hmamed A, Qjidaa H (2021) Robust \(H_{\infty }\) deconvolution filtering of 2-D digital systems of orthogonal local descriptor. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-10845-9

  15. Fornasini E, Marchesini G (1978) Doubly indexed dynamical systems: state space models and structural properties. Math. Syst. Theory 12(1):59–72

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao CY, Duan GR, Meng XY (2008) Robust \(h_{\infty }\) filter design for 2D discrete systems in Roesser model. Int J Autom Comput 5 (4):413–418

    Article  Google Scholar 

  17. Hien LV, Vu LH, Trinh H (2018) Stability of two-dimensional descriptor systems with generalized directional delays. Syst Control Lett 112:42–50

    Article  MathSciNet  MATH  Google Scholar 

  18. Hinamoto T, Fairman FW, Shimonishi J (1982) Stabilization of 2D filters using 2D observers. Int J Syst Sci 13:177–191

    Article  MATH  Google Scholar 

  19. Hmamed A, El Hajjaji A, Benzaouia A (2009) Stabilization of discrete-time 2D T-S fuzzy systems by state feedback control. In: 17th Mediterranean conference on control and automation, MED’09. Thessaloniki, pp 1–6

  20. Hmamed A, Kririm S, Benzaouia A, Tadeo F (2016) Delay-dependent stability and stabilisation of continuous 2D delayed systems with saturating control. Int J Syst Sci 47(12):3004–3015. https://doi.org/10.1080/00207721.2015.1063172

    Article  MathSciNet  MATH  Google Scholar 

  21. Hmamed A, Mesquine F, Tadeo F, Benhayoun M, Benzaouia A (2010) Stabilization of 2D saturated systems by state feedback control. Multidimens Syst Signal Process 21:277–292. https://doi.org/10.1007/s11045-010-0107-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaczorek T (1985) Tow-dimensionel linear systems. Springer, Berlin

    Google Scholar 

  23. Kaczorek T (1993) Acceptable input sequences for singular 2-D linear systems. IEEE Trans Automat Contr 38:1391–1394

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaczorek T (2001) Perfect observers for singular 2-D Fornasini-Marchesini models. IEEE Trans Autom Control 46(10):1671–1675

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Article  Google Scholar 

  26. Kawaji S (1984) Minimal order state observer for Two-Dimensional systems. IFAC Proceedings Volumes 17 (2):383–388. https://doi.org/10.1016/S1474-6670(17)61000-0

    Article  Google Scholar 

  27. Kririm S, Hmamed A (2019) Robust \(H_{\infty }\) filtering for uncertain 2D singular systems with delays. 8th International Conference on Systems and Control (ICSC)

  28. Kririm S, Hmamed A, Tadeo F (2015) Robust \(h_{\infty }\) filtering for uncertain 2D singular Roesser models. Circuits Systems and Signal Processing 34(7):2213–2235. https://doi.org/10.1007/s00034-015-9967-x

    Article  MathSciNet  MATH  Google Scholar 

  29. Kririm S, Hmamed A, Tadeo F (2015) Analysis and design of \(h_{\infty }\) controllers for 2D singular systems with delays. Circuits Systems and Signal Processing 35. https://doi.org/10.1007/s00034-015-0139-9

  30. Kririm S, Zouhri A, Qjidaa H, Hmamed A (2021) Deconvolution filter design of transmission channel: application to 3D objects using features extraction from orthogonal descriptor. Neural Comput Appl 33(24):16865–16879. ISSN 09410643, https://doi.org/10.1007/s00521-021-06533-2

    Article  Google Scholar 

  31. Kririm S, Hmamed A (2017) Stabilisability of differential linear repetitive processes delayed systems with saturating control. International Journal of Automation and Control 11(2):207–221

    Article  Google Scholar 

  32. Kririm S, El Haiek B, Hmamed A (2016) Reduced-order H\(\infty \) filter design method for uncertain differential linear repetitive processes. In: 2016 5th International Conference on Systems and Control (ICSC), Marrakesh, Morocco, vol 11, pp 319–325. https://doi.org/10.1109/ICoSC.2016.7507035

  33. Kumar R, Dhiman G (2021) A comparative study of fuzzy optimization through fuzzy number. Int J Modern Res 1:1–14

    Google Scholar 

  34. Peng D., Guan X. (2009) \(H_{\infty }\) filtering of 2D discrete state-delayed systems. Multidimens Syst Signal Process 20 (3):265–284

    Article  MathSciNet  MATH  Google Scholar 

  35. Petersen IR (1987) A stabilization algorithm for a class of uncertain linear systems. Syst Control Lett 8(4):351–357

    Article  MathSciNet  MATH  Google Scholar 

  36. Roesser R (1975) A discrete state-space model for linear image processing. IEEE Trans. Autom. Control 20(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  37. Sajewski L (2009) Solution of 2D singular hybrid linear system. Kybernetes 38 (7/8):1079–1092. https://doi.org/10.1108/03684920910976835

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang Z, Shang H (2022) Observer based fault detection for two dimensional systems described by Roesser models, Multidim Syst Sign Process. https://doi.org/10.1007/s11045-014-0279-2

  39. Wang L, Xu H, Zou Y (2013) Regular unknown input functional observers for 2-D singular systems. Int J Control Autom Syst 11:911–918. https://doi.org/10.1007/s12555-012-9422-8

    Article  Google Scholar 

  40. Wu L, Wang Z, Gao H, Wang C (2007) Filtering for uncertain 2D discrete systems with state delays. Signal Process 87(9):2213–2230

    Article  MATH  Google Scholar 

  41. Xu S, Lam J, Zou Y, Lin Z, Paszke W (2005) Robust \(h_{\infty }\) filtering for uncertain 2D continuous systems. IEEE Trans Signal Process 53 (5):1731–1738

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu H, Lin Z, Makur A (2010) Non-fragile h2 and \(h_{\infty }\) filter designs for polytopic two-dimensional systems in Roesser model. Multidimens Syst Signal Process 21(3):255–275

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu H, Sheng M, Zou Y, Guo L (2006) Robust \(h_{\infty }\) control foruncertain 2-D singular Roesser Models. Control Theor Appl 23:703–705

    MATH  Google Scholar 

  44. Xu H, Zou Y (2011) \(H{\infty }\) control for 2-D singular delayed systems. Int J Syst Sci 42(4):609–619

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu H, Zou Y, Lam J (2006) Observer-based filtering of 2-D singular system described by Roesser models. Acta Automatica Sinica 32:213–218

    MathSciNet  MATH  Google Scholar 

  46. Xu H, Zou Y, Xu S, Lam J (2005) \(H{\infty }\) model reduction of 2-D singular Roesser Models. Multidimension Syst Signal Process 16:285–304

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu H, Zou Y, Xu S, Lam J (2005) Bounded real lemma and robust \(h{\infty }\) control of 2-D singular Roesser models. SystControl Letters 54:339–346

    MathSciNet  MATH  Google Scholar 

  48. Yang R, Xie L, Zhang C (2006) H2 and mixed H2/\(H_{\infty }\) control of two-dimensional systems in Roesser model. Automatica 42(9):1507–1514

    Article  MathSciNet  MATH  Google Scholar 

  49. Zou Y, Campbell SL (2000) The jump behavior and stability analysis for 2-D singular systems. Multidimension Syst Signal Process 11:321–338

    Article  MathSciNet  MATH  Google Scholar 

  50. Zou Y, Wang W, Xu X (2008) The state observer and compensator of a large class of 2-D acceptable singular systems. Multidim Syst Sign Process 19:139–155. https://doi.org/10.1007/s11045-007-0035-y

    Article  MathSciNet  MATH  Google Scholar 

  51. Zou Y, Xu H (2007) Duality of 2-D singular system of Roessermodels. J Control Theory Appl 5(1):37–41

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Kririm.

Ethics declarations

Conflict of Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Amal Zouhri, Mostafa El Mallahi and Abdelaziz Hmamed are contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kririm, S., Zouhri, A., Mallahi, M.E. et al. New robust state estimation of 2D embedded descriptor systems in Roesser form with bounded disturbance using strict LMI approach. Multimed Tools Appl 82, 47425–47439 (2023). https://doi.org/10.1007/s11042-023-14719-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14719-0

Keywords

Navigation