Skip to main content
Log in

A hybrid framework for bot detection on twitter: Fusing digital DNA with BERT

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With the recognition and influence of Twitter on modern society, an enormous amount of multimedia information is regularly generated and rapidly disseminated on the platform. These characteristics have caught the attention of automated accounts called bots that are frequently leveraged for malevolent activities. From distorting the political elections to crashing the stock markets to spreading conspiracy theories and fake news, various bot accounts have become a source of grave concern. Particularly, spambots have been known to mimic the behaviour of a legitimate user, making them almost insurmountable to detect. Of late, DNA inspired behaviour encoding of Twitter accounts such as B3Type, and B3Content DNA has achieved promising results in detecting the social spambots. However, the evolving nature of spambots drives academia and the industries to devise adaptive strategies to keep pace with the progressing capabilities of these spambots and curtail the menace caused by them. Therefore, this study proposes a hybrid technique utilizing digital DNA as a base approach and augmenting it with the state-of-the-art BERT model pre-trained on the sentiment classification task. The proposed hybrid encoding is termed B3Sentiment DNA. Further, the study extends B3Content encoding and proposes B5Content DNA encoding to make spambot detection more robust. B5Content encoding achieved an accuracy of 75.23%, surpassing B3Content encoding, while the proposed hybrid approach, B3Sentiment DNA, achieved an accuracy of 85.79%, significantly outperforming all the DNA encoding techniques considered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.dianping.com/

  2. http://mib.projects.iit.cnr.it/dataset.html

  3. https://github.com/cgpotts/dynasent

  4. https://dynabench.org/

  5. https://github.com/twintproject/twint

References

  1. Abu-El-Rub N, Mueen A (2019) BotCamp: Bot-Driven Interactions in Social Campaigns. In: The World Wide Web Conference. pp. 2529–2535. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3308558.3313420

  2. Ackermann MR, Märtens M, Raupach C, Swierkot K, Lammersen C, Sohler C (2012) StreamKM++: a clustering algorithm for data streams. J Exp Algorithmics 17:2.4:1–2.4:30. https://doi.org/10.1145/2133803.2184450

    Article  MathSciNet  MATH  Google Scholar 

  3. Alom Z, Carminati B, Ferrari E (2020) A deep learning model for twitter spam detection. Online Soc Networks Media 18:1–12. https://doi.org/10.1016/j.osnem.2020.100079

    Article  Google Scholar 

  4. Alowibdi JS, Buy UA, Yu PS, Ghani S, Mokbel M (2015) Deception detection in twitter. Soc Netw Anal Min 5:32. https://doi.org/10.1007/s13278-015-0273-1

    Article  Google Scholar 

  5. Alterkavi S, Erbay H (2021) Novel authorship verification model for social media accounts compromised by a human. Multimed Tools Appl 80:13575–13591. https://doi.org/10.1007/s11042-020-10361-2

    Article  Google Scholar 

  6. Amleshwaram AA, Reddy N, Yadav S, Gu G, Yang C (2013) CATS: Characterizing automation of Twitter spammers. In: 2013 Fifth International Conference on Communication Systems and Networks (COMSNETS). pp. 1–10. https://doi.org/10.1109/COMSNETS.2013.6465541

  7. Andriotis P, Takasu A (2018) Emotional Bots: Content-based Spammer Detection on Social Media. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS). pp. 1–8. https://doi.org/10.1109/WIFS.2018.8630760

  8. Anwar A, Yaqub U (n.d.) Bot detection in twitter landscape using unsupervised learning. Presented at the (2020). https://doi.org/10.1145/3396956.3401801

  9. Arnold M, Ohlebusch E (2011) Linear time algorithms for generalizations of the longest common substring problem. Algorithmica. 60:806–818. https://doi.org/10.1007/s00453-009-9369-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Badawy A, Ferrara E, Lerman K (2018) Analyzing the Digital Traces of Political Manipulation: The 2016 Russian Interference Twitter Campaign. In: Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE Press. pp. 258–265

  11. Benevenuto F, Magno G, Rodrigues T, Almeida V (2010) Detecting spammers on twitter. In: Seventh annual Collaboration, Electronic messaging, Anti- Abuse and Spam Conference. Redmond

  12. Bessi A, Ferrar E (2016) Social Bots Distort the 2016 U.S. Presidential Election Online Discussion. First Monday. 21. https://doi.org/10.5210/fm.v21i11.7090

  13. Binsaeed K, Stringhini G, Youssef A (2020) Detecting Spam in Twitter Microblogging Services: A Novel Machine Learning Approach based on Domain Popularity. Int J Adv Comput Sci Appl 11:11–22. https://doi.org/10.14569/IJACSA.2020.0111103

    Article  Google Scholar 

  14. Boshmaf Y, Logothetis D, Siganos G, Leria J, Lorenzo J, Ripeanu M, Beznosov K (2015) Integro: Leveraging Victim Prediction for Robust Fake Account Detection in OSNs. Proc. Netw. Distrib. Syst. Secur. Symp. https://doi.org/10.14722/ndss.2015.23260

  15. Cao F, Ester M, Weining Q, Aoying Z (2006) Density-based clustering over an evolving data stream with noise. In: Proceedings of the Sixth SIAM International Conference on Data Mining. , Bethesda, MD, USA

  16. Cao Q, Sirivianos M, Yang X, Pregueiro T (2012) Aiding the detection of fake accounts in large scale social online services. In: Proceedings of NSDI 2012: 9th USENIX Symposium on Networked Systems Design and Implementation. pp. 197–210

  17. Chavoshi N, Hamooni H, Mueen A (2016) DeBot: Twitter Bot Detection via Warped Correlation. In: 2016 IEEE 16th International Conference on Data Mining (ICDM). pp. 817–822. https://doi.org/10.1109/ICDM.2016.0096

  18. Cresci S, Di Pietro R, Petrocchi M, Spognardi A, Tesconi M (2016) DNA-inspired online behavioral modeling and its application to Spambot detection. IEEE Intell Syst 31:58–64. https://doi.org/10.1109/MIS.2016.29

    Article  Google Scholar 

  19. Cresci S, Spognardi A, Petrocchi M, Tesconi M, Di Pietro R (2017) The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race. In: 26th International World Wide Web Conference 2017, WWW 2017 Companion. pp. 963–972. https://doi.org/10.1145/3041021.3055135

  20. Cresci S, Di Pietro R, Petrocchi M, Spognardi A, Tesconi M (2017) Exploiting digital DNA for the analysis of similarities in twitter behaviours. In: Proceedings - 2017 International Conference on Data Science and Advanced Analytics, DSAA 2017. pp. 686–695. https://doi.org/10.1109/DSAA.2017.57

  21. Cresci S, Di Pietro R, Petrocchi M, Spognardi A, Tesconi M (2018) Social fingerprinting: detection of Spambot groups through DNA-inspired behavioral modeling. IEEE Trans Dependable Secur Comput 15:561–576. https://doi.org/10.1109/TDSC.2017.2681672

    Article  Google Scholar 

  22. Dalianis H (2018) Evaluation metrics and evaluation. In: Clinical text mining. Springer, Cham, pp 45–53. https://doi.org/10.1007/978-3-319-78503-5_6

    Chapter  Google Scholar 

  23. Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: NAACL HLT 2019–2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference. pp. 4171–4186

  24. Dhingra A, Mittal S (2015) Content based spam classification in twitter using MultiLayer perceptron learning. Int J Latest Trends Eng Technol 5:9–19

    Google Scholar 

  25. Dickerson JP, Kagan V, Subrahmanian VS (2014) Using sentiment to detect bots on Twitter: Are humans more opinionated than bots? In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014). pp. 620–627. https://doi.org/10.1109/ASONAM.2014.6921650

  26. Erşahin B, Aktaş Ö, Kilmç D, Akyol C (2017) Twitter fake account detection. In: 2nd International Conference on Computer Science and Engineering, UBMK 2017. pp. 388–392. https://doi.org/10.1109/UBMK.2017.8093420

  27. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  28. Ferrara E (2017) Disinformation and social bot operations in the run up to the 2017 French presidential election. First Monday 22. https://doi.org/10.5210/fm.v22i18.8005

  29. Ferrara E, Varol O, Davis C, Menczer F, Flammini A (2016) The rise of social bots. Commun ACM 59:96–104. https://doi.org/10.1145/2818717

    Article  Google Scholar 

  30. Gamallo P, Almatarneh S (n.d.) Naive-Bayesian classification for bot detection in twitter notebook for PAN at CLEF 2019. Presented at the (2019).

  31. Gao H, Chen Y, Lee K, Palsetia D, Choudhary AN (2012) Towards Online Spam Filtering in Social Networks. In: 19th Annual Network and Distributed System Security Symposium (NDSS)

  32. García S, Grill M, Stiborek J, Zunino A (2014) An empirical comparison of botnet detection methods. Comput Secur 45:100–123. https://doi.org/10.1016/j.cose.2014.05.011

    Article  Google Scholar 

  33. Gayo-Avello D (2017) Social media won’t free us. IEEE Internet Comput 21:98–101. https://doi.org/10.1109/MIC.2017.2911439

    Article  Google Scholar 

  34. Ghosh S, Viswanath B, Kooti F, Sharma NK, Korlam G, Benevenuto F, Ganguly N, Gummadi KP (2012) Understanding and Combating Link Farming in the Twitter Social Network. In: Proceedings of the 21st International Conference on World Wide Web. pp. 61–70. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2187836.2187846

  35. Gilani Z, Kochmar E, Crowcroft J (2017) Classification of Twitter Accounts into Automated Agents and Human Users. In: 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). pp. 489–496

  36. Gong Q, Chen Y, He X, Zhuang Z, Wang T, Huang H, Wang X, Fu X (2018) DeepScan: exploiting deep learning for malicious account detection in location-based social networks. IEEE Commun Mag 56:21–27. https://doi.org/10.1109/MCOM.2018.1700575

    Article  Google Scholar 

  37. Grier C, Thomas K, Paxson V, Zhang M (2010) @spam: The Underground on 140 Characters or Less. In: Proceedings of the 17th ACM Conference on Computer and Communications Security. Association for Computing Machinery, New York, NY, USA. pp. 27–37. https://doi.org/10.1145/1866307.1866311

  38. Gupta A, Lamba H, Kumaraguru P (2013) $1.00 per RT #BostonMarathon #PrayForBoston: Analyzing fake content on twitter. eCrime Res. Summit, eCrime. 1–12. https://doi.org/10.1109/eCRS.2013.6805772

  39. Howard J, Ruder S (2018) Universal Language Model Fine-tuning for Text Classification. arXiv:1801.06146

  40. Hu X, Tang J, Liu H (2014) Online Social Spammer Detection. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI Press. pp. 59–65

  41. Kaliyar RK, Goswami A, Narang P (2021) FakeBERT: fake news detection in social media with a BERT-based deep learning approach. Multimed Tools Appl 80:11765–11788. https://doi.org/10.1007/s11042-020-10183-2

    Article  Google Scholar 

  42. Kaubiyal J, Jain AK (2019) A Feature Based Approach to Detect Fake Profiles in Twitter. In: Proceedings of the 3rd International Conference on Big Data and Internet of Things. Association for Computing Machinery, New York, NY, USA. pp. 135–139. https://doi.org/10.1145/3361758.3361784

  43. Khalil H, Khan MUS, Ali M (2020) Feature Selection for Unsupervised Bot Detection. In: 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). pp. 1–7. https://doi.org/10.1109/iCoMET48670.2020.9074131

  44. Khan K, Rehman SU, Aziz K, Fong S, Sarasvady S (2014) DBSCAN: Past, present and future. In: The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014). pp. 232–238. https://doi.org/10.1109/ICADIWT.2014.6814687

  45. Kosmajac D, Keselj V (2019) Twitter Bot Detection using Diversity Measures. In: Proceedings of the 3rd International Conference on Natural Language and Speech Processing. Association for Computational Linguistics, Trento, Italy. pp. 1–8

  46. Kramer S (n.d.) Identifying viral bots and cyborgs in social media, https://www.oreilly.com/ideas/identifying-viral-bots-and-cyborgs-in-social-media?imm_mid=0f81cc&cmp=em-data-na-na-newsltr_20171115

  47. Kuchling AM (n.d.) Regular Expression HOWTO, https://docs.python.org/3/howto/regex.html#regex-howto. last accessed 2021/07/20

  48. Kudugunta S, Ferrara E (2018) Deep neural networks for bot detection. Inf Sci (NY) 467(312–322):312–322

    Article  Google Scholar 

  49. Lee S, Kim J (2013) Warningbird: a near real-time detection system for suspicious URLs in twitter stream. IEEE Trans Dependable Secur Comput 10:183–195

    Article  Google Scholar 

  50. Lee K, Caverlee J, Webb S (2010) Uncovering Social Spammers: Social Honeypots + Machine Learning. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Association for Computing Machinery, New York, NY, USA. pp. 435–442. https://doi.org/10.1145/1835449.1835522

  51. Lee K, Eoff BD, Caverlee J (2011) Seven months with the devils: a long-term study of content polluters on twitter. In: Proceedings of the Fifth International Conference on Weblogs and Social Media. pp. 185–192. https://doi.org/10.1609/icwsm.v5i1.14106

  52. Lingam G, Rout RR, Somayajulu DVLN (2019) Adaptive deep Q-learning model for detecting social bots and influential users in online social networks. Appl Intell 49:3947–3964. https://doi.org/10.1007/s10489-019-01488-3

    Article  Google Scholar 

  53. Lingam G, Rout RR, Somayajulu D, Das SK (2020) Social Botnet Community Detection: A Novel Approach Based on Behavioral Similarity in Twitter Network Using Deep Learning. In: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. Association for Computing Machinery, New York, NY, USA. pp. 708–718. https://doi.org/10.1145/3320269.3384770

  54. Liu H, Han J, Motoda H (2014) Uncovering deception in social media. Soc Netw Anal Min 4:162. https://doi.org/10.1007/s13278-014-0162-z

    Article  Google Scholar 

  55. Liu Y, Ji S, Mittal P (2016) SmartWalk: Enhancing Social Network Security via Adaptive Random Walks. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing Machinery, New York, NY, USA. pp. 492–503. https://doi.org/10.1145/2976749.2978319

  56. Loader BD, Mercea D (2011) NETWORKING DEMOCRACY? Information. Commun Soc 14:757–769. https://doi.org/10.1080/1369118X.2011.592648

    Article  Google Scholar 

  57. Locker M (n.d.) Twitter is automatically removing about 10 accounts every second, https://www.fastcompany.com/90331696/twitter-is-automatically-removing-about-10-accounts-every-second. last accessed 2021/07/17

  58. Luo L, Zhang X, Yang X, Yang W (2020) Deepbot: A Deep Neural Network based approach for Detecting Twitter Bots. IOP Conf Ser Mater Sci Eng 719:12063. https://doi.org/10.1088/1757-899X/719/1/012063

    Article  Google Scholar 

  59. Mahmood A, Srinivasan P (2019) Twitter bots and gender detection using Tf-idf. In: CLEF

  60. Mazza M, Cresci S, Avvenuti M, Quattrociocchi W, Tesconi M (2019) RTbust: Exploiting temporal patterns for botnet detection on twitter. In: WebSci 2019 - Proceedings of the 11th ACM Conference on Web Science. pp. 183–192. https://doi.org/10.1145/3292522.3326015

  61. Meda C, Bisio F, Gastaldo P, Zunino RD (2014) Machine Learning Techniques applied to Twitter Spammers Detection. Recent Adv. Electr. Electron. Eng. 177–182

  62. Metaxas PT, Mustafaraj E (2012) Social media and the elections. Science (80- ) 338:472–473. https://doi.org/10.1126/science.1230456

    Article  Google Scholar 

  63. Miller Z, Dickinson B, Deitrick W, Hu W, Wang AH (2014) Twitter spammer detection using data stream clustering. Inf Sci (NY) 260(64–73):64–73. https://doi.org/10.1016/j.ins.2013.11.016

    Article  Google Scholar 

  64. Most popular mobile social networking apps in the United States as of September 2019, by average session duration (in minutes) (n.d.), https://www.statista.com/statistics/579411/top-us-social-networking-apps-ranked-by-session-length/. last accessed 2021/07/17

  65. Mostrous A, Bridge M, Gibbon K (n.d.) Russia used Twitter bots and trolls ‘to disrupt’ Brexit vote, https://www.thetimes.co.uk/article/russia-used-web-posts-to-disrupt-brexit-vote-h9nv5zg6c. last accessed 2021/07/20

  66. Niranjan Koggalahewa D, Xu Y, Foo E (2020) Spam Detection in Social Networks Based on Peer Acceptance. In: Proceedings of the Australasian Computer Science Week Multiconference. Association for Computing Machinery, New York, NY, USA. pp. 1–7. https://doi.org/10.1145/3373017.3373025.

  67. Orabi M, Mouheb D, Al Aghbari Z, Kamel I (2020) Detection of bots in social media: a systematic review. Inf Process Manag 57:102250. https://doi.org/10.1016/j.ipm.2020.102250

    Article  Google Scholar 

  68. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  69. Paudel P, Nguyen T, Hatua A, Sung A (n.d.) How the tables have turned: studying the new wave of social bots on twitter using complex network analysis techniques. Presented at the (2019). https://doi.org/10.1145/3341161.3342898

  70. Potts C, Wu Z, Geiger A, Douwe K (2020) DynaSent: A Dynamic Benchmark for Sentiment Analysis. arXiv:2012.15349

  71. Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. Accessed 2021/04/01

  72. Rathore S, Sharma PK, Loia V, Jeong YS, Park JH (2017) Social network security: issues, challenges, threats, and solutions. Inf Sci (NY) 421(43–69):43–69. https://doi.org/10.1016/j.ins.2017.08.063

    Article  Google Scholar 

  73. Ratkiewicz J, Meiss M, Conover M, Gonçalves B, Flammini A, Menczer F (2011) Detecting and Tracking Political Abuse in Social Media. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. pp. 297–304

  74. Rodríguez-Ruiz J, Mata-Sánchez JI, Monroy R, Loyola-González O, López-Cuevas A (2020) A one-class classification approach for bot detection on twitter. Comput Secur 91:101715. https://doi.org/10.1016/j.cose.2020.101715

    Article  Google Scholar 

  75. Rossi S, Rossi M, Upreti B, Liu Y (n.d.) Detecting Political Bots on Twitter during the 2019 Finnish Parliamentary Election. Presented at the (2020). https://doi.org/10.24251/HICSS.2020.298

  76. Sang ETK, Bos J (2012) Predicting the 2011 Dutch senate election results with twitter. In: proceedings of the workshop on semantic analysis in social media. Association for Computational Linguistics, USA. pp. 53–60

  77. Sasirekha K, Baby PS (n.d.) Agglomerative Hierarchical Clustering Algorithm- A Review. Presented at the (2013)

  78. Shafahi M, Kempers L, Afsarmanesh H (2016) Phishing through social bots on Twitter. In: Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016. pp. 3703–3712. https://doi.org/10.1109/BigData.2016.7841038

  79. Shahapure KR, Nicholas C (2020) Cluster Quality Analysis Using Silhouette Score. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). pp. 747–748. https://doi.org/10.1109/DSAA49011.2020.00096

  80. Shu K, Sliva A, Wang S, Tang J, Liu H (2017) Fake news detection on social media. ACM SIGKDD Explor Newsl 19:22–36. https://doi.org/10.1145/3137597.3137600

    Article  Google Scholar 

  81. Stella M, Ferrara E, Domenico M (2018) Bots sustain and inflate striking opposition in online social systems. arXiv:1802.07292

  82. Stringhini G, Kruegel C, Vigna G (2010) Detecting Spammers on Social Networks. In: Proceedings of the 26th Annual Computer Security Applications Conference. Association for Computing Machinery, New York, NY, USA. pp. 1–9. https://doi.org/10.1145/1920261.1920263

  83. Subrahmanian VS, Azaria A, Durst S, Kagan V, Galstyan A, Lerman K, Zhu L, Ferrara E, Flammini A, Menczer F (2016) The DARPA twitter bot challenge. Computer (Long Beach Calif) 49:38–46. https://doi.org/10.1109/MC.2016.183

    Article  Google Scholar 

  84. Szpankowski W (1993) A generalized suffix tree and its (un)expected asymptotic behaviors. SIAM J Comput 22:1176–1198. https://doi.org/10.1137/0222070

    Article  MathSciNet  MATH  Google Scholar 

  85. Thomas K, Grier C, Ma J, Paxson V, Song D (2011) Design and evaluation of a real-time URL spam filtering service. In: Proceedings - IEEE Symposium on Security and Privacy. pp. 447–462. https://doi.org/10.1109/SP.2011.25

  86. Tumasjan A, Sprenger TO, Sandner PG, Welpe IM (2010) Predicting elections with twitter: what 140 characters reveal about political sentiment. In: ICWSM

  87. Twitter Usage Statistics (n.d.), https://www.internetlivestats.com/twitter-statistics/. last accessed 2021/07/17

  88. TwitterIR: Q4 and Fiscal Year 2017 Letter to Shareholders (n.d.), http://files.shareholder.com/downloads/AMDA-2F526X/6103909574x0x970892/F9B4F616-659A-454B-89C6-28480DA53CCA/Q4_2017_Shareholder_Letter.pdf, last accessed 2021/07/15

  89. Varol O, Ferrara E, Davis CA, Menczer F, Flammini A (2017) Online human-bot interactions: Detection, estimation, and characterization. Proc. 11th Int. Conf. Web Soc. Media, ICWSM 2017. 280–289

  90. Varol O, Ferrara E, Menczer F, Flammini A (2017) Early detection of promoted campaigns on social media. EPJ Data Sci 6:1–19. https://doi.org/10.1140/epjds/s13688-017-0111-y

    Article  Google Scholar 

  91. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is All You Need. In: 31st International Conference on Neural Information Processing Systems. pp. 6000–6010. Curran Associates Inc., Long Beach, California, USA

  92. Venkatesh R, Rout JK, Jena SK (2017) Malicious account detection based on short URLs in twitter. In: Lobiyal D, Mohapatra D, Nagar A, Sahoo M (eds) International conference on signal, networks, computing, and systems. Lecture Notes in Electrical Engineering, pp 34–41. https://doi.org/10.1007/978-81-322-3592-7

    Chapter  Google Scholar 

  93. Vijayvergia A, Kumar K (2021) Selective shallow models strength integration for emotion detection using GloVe and LSTM. Multimed Tools Appl 80:28349–28363. https://doi.org/10.1007/s11042-021-10997-8

    Article  Google Scholar 

  94. Viswanath B, Post A, Gummadi KP, Mislove A (2010) An Analysis of Social Network-Based Sybil Defenses. In: Proceedings of the ACM SIGCOMM 2010 Conference. Association for Computing Machinery, New York, NY, USA. pp. 363–374. https://doi.org/10.1145/1851182.1851226

  95. Wang AH (2010) Detecting spam bots in online social networking sites: A machine learning approach. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 6166 LNCS, 335–342. https://doi.org/10.1007/978-3-642-13739-6_25

  96. Wang AH (2010) Don’t follow me: Spam detection in Twitter. In: 2010 International Conference on Security and Cryptography (SECRYPT). pp. 1–10

  97. Wang B, Zubiaga A, Liakata M, Procter R (2015) Making the most of tweet-inherent features for social spam detection on twitter. WWW Workshop on Making Sense of Microposts 1395:10–16

    Google Scholar 

  98. Wei F, Nguyen UT (2019) Twitter Bot Detection Using Bidirectional Long Short-Term Memory Neural Networks and Word Embeddings. In: 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). pp. 101–109. https://doi.org/10.1109/TPS-ISA48467.2019.00021

  99. Wu J (2012) Cluster analysis and K-means clustering: an introduction. Advances in K-means Clustering. Springer, Berlin, pp 1–16. https://doi.org/10.1007/978-3-642-29807-3_1

  100. Wu K, Yang S, Zhu KQ (2015) False rumors detection on Sina Weibo by propagation structures. In: 2015 IEEE 31st International Conference on Data Engineering. pp. 651–662. https://doi.org/10.1109/ICDE.2015.7113322

  101. Xie Y, Yu F, Ke Q, Abadi M, Gillum E, Vitaldevaria K, Walter J, Huang J, Mao ZM (2012) Innocent by association: Early recognition of legitimate users. In: Proceedings of the ACM Conference on Computer and Communications Security. pp. 353–364. https://doi.org/10.1145/2382196.2382235

  102. Yang C, Harkreader RC, Gu G (2011) Die Free or Live Hard? Empirical Evaluation and New Design for Fighting Evolving Twitter Spammers. In: Sommer R, Balzarotti D, Maier G (eds) Recent Advances in Intrusion Detection, pp 318–337. https://doi.org/10.1007/978-3-642-23644-0_17

    Chapter  Google Scholar 

  103. Yang C, Harkreader R, Zhang J, Shin S, Gu G (2012) Analyzing spammers’ social networks for fun and profit. Proc Int World Wide Web Conf Comm 71–80. https://doi.org/10.1145/2187836.2187847

  104. Yang F, Liu Y, Yu X, Yang M (2012) Automatic Detection of Rumor on Sina Weibo. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. Association for Computing Machinery, New York, NY, USA. pp. 1–7. https://doi.org/10.1145/2350190.2350203

  105. Yang C, Harkreader R, Gu G (2013) Empirical evaluation and new design for fighting evolving twitter spammers. IEEE Trans Inf Forensics Secur 8:1280–1293. https://doi.org/10.1109/TIFS.2013.2267732

    Article  Google Scholar 

  106. Yardi S, Romero D Schoenebeck G, Boyd D (2010) Detecting spam in a Twitter network. First Monday. 15

  107. Zhang X, Zhu S, Liang W (2012) Detecting spam and promoting campaigns in the Twitter social network. Proc. - IEEE Int. Conf. Data Mining, ICDM. 1194–1199. https://doi.org/10.1109/ICDM.2012.28

Download references

Funding

No funds, grants, or other support was received in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatin Kapoor.

Ethics declarations

Conflicts of interest/Competing interest

The authors have no competing interests to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, V., Kapoor, Y. A hybrid framework for bot detection on twitter: Fusing digital DNA with BERT. Multimed Tools Appl 82, 30831–30854 (2023). https://doi.org/10.1007/s11042-023-14730-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14730-5

Keywords

Navigation