Skip to main content
Log in

Classification of physiological disorders in apples using deep convolutional neural network under different lighting conditions

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Non-destructive testing of apple fruit, an important product in the world fresh fruit trade, according to physiological disorders, can be done with a computer vision system. However, in the vision system, images may be affected by the brightness values created by different lighting conditions. For this reason, it is a necessity to use algorithms that accurately and quickly detect physiological disorders. By using a convolutional neural network (CNN), an algorithm that enables easy extraction of features from images, determining physiological disorders becomes easier. This study aims to classify the images of apples with physiological disorders obtained under different lighting conditions with CNN models. This study created a dataset (images of different light colors, angles, and distances) with some physiological disorder images. A 5-fold cross-validation method was applied to improve the generalization ability of the models, and CNN models were trained end-to-end. In addition, the Friedman hypothesis test and post-hoc Nemenyi test were performed to compare the evaluation indicators of different CNN models. The average accuracy, precision, recall, and F1-score of the Xception model were 0.996, 0.994, 0.996, and 0.998, respectively. The classification accuracy of this model is followed by the ResNet101, MobileNet, ResNet152, ResNet18, ResNet34, ResNet50, EfficientNetB0, AlexNet, VGG16, and VGG19. Finally, Xception performed well, according to Friedman/Nemenyi test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data set used or analyzed during the current study is available from the corresponding author on reasonable request.

References

  1. Abdel-Salam R, Mostafa R, Abdel-Gawad AH (2022) RIECNN: real-time image enhanced CNN for traffic sign recognition. Neural Comput Appl 34(8):6085–6096

  2. Adler A, Elad M, Zibulevsky M, (2016) Compressed learning: a deep neural network approach. arXiv preprint arXiv:161009615

  3. Alharbi AG, Arif M, (2020) Detection and classification of apple diseases using convolutional neural networks. 2020 2nd international conference on computer and information sciences (ICCIS), 1–6. https://doi.org/10.1109/ICCIS49240.2020.9257640.

  4. Ali H, Lali M, Nawaz MZ, Sharif M, Saleem B (2017) Symptom based automated detection of citrus diseases using color histogram and textural descriptors. Comput Electron Agric 138:92–104. https://doi.org/10.1016/j.compag.2017.04.008

    Article  Google Scholar 

  5. Altuntaş Y, Cömert Z, Kocamaz AF (2019) Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach. Comput Electron Agric 163:104874. https://doi.org/10.1016/j.compag.2019.104874

  6. Anagnostis A, Asiminari G, Papageorgiou E, Bochtis D (2020) A convolutional neural networks based method for anthracnose infected walnut tree leaves identification. Appl Sci 10(2):469. https://doi.org/10.3390/app10020469

    Article  Google Scholar 

  7. Arefi A, Moghaddam PA, Hassanpour A, Mollazade K, Motlagh AM (2016) Non-destructive identification of mealy apples using biospeckle imaging. Postharvest Biol Technol 112:266–276. https://doi.org/10.1016/j.postharvbio.2015.09.001

    Article  Google Scholar 

  8. Ariana D, Guyer DE, Shrestha B (2006) Integrating multispectral reflectance and fluorescence imaging for defect detection on apples. Comput Electron Agric 50(2):148–161. https://doi.org/10.1016/j.compag.2005.10.002

    Article  Google Scholar 

  9. Ayaz H, Rodríguez-Esparza E, Ahmad M, Oliva D, Pérez-Cisneros M, Sarkar R (2021) Classification of apple disease based on non-linear deep features. Appl Sci 11(14):6422. https://doi.org/10.3390/app11146422

    Article  Google Scholar 

  10. Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A (2019) Comparison of deep learning approaches for multi-label chest X-ray classification. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-42294-8

    Article  Google Scholar 

  11. Bansal P, Kumar R, Kumar S (2021) Disease detection in apple leaves using deep convolutional neural network. Agriculture 11(7):617. https://doi.org/10.3390/agriculture11070617

    Article  Google Scholar 

  12. Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Montavon G, Orr GB, Müller KR (eds) Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, pp 437–478. https://doi.org/10.1007/978-3-642-35289-8_26

  13. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828. https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  14. Brosnan T, Sun D-W (2004) Improving quality inspection of food products by computer vision––a review. J Food Eng 61(1):3–16. https://doi.org/10.1016/S0260-8774(03)00183-3

    Article  Google Scholar 

  15. Büyükarıkan B, Ülker E (2020) Aydınlatma özniteliği kullanılarak evrişimsel sinir ağı modelleri ile meyve sınıflandırma. Uludağ Univ J Fac Eng 25(1):81–100. https://doi.org/10.17482/uumfd.628166

    Article  Google Scholar 

  16. Buyukarikan B, Ulker E (2022) Classification of physiological disorders in apples fruit using a hybrid model based on convolutional neural network and machine learning methods. Neural Comput Appl 34(19):16973–16988

  17. Cainelli N, Forestan C, Angeli D, Villegas TR, Costa F, Botton A, Rasori A, Bonghi C, Ruperti B (2021) Transcriptomic insights on the preventive action of apple (cv granny smith) skin wounding on superficial scald development. Int J Mol Sci 22(24):13425. https://doi.org/10.3390/ijms222413425

    Article  Google Scholar 

  18. Carranza-García M, García-Gutiérrez J, Riquelme JC (2019) A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sens 11(3):274. https://doi.org/10.3390/rs11030274

    Article  Google Scholar 

  19. Chen Y-R, Chao K, Kim MS (2002) Machine vision technology for agricultural applications. Comput Electron Agric 36(2–3):173–191. https://doi.org/10.1016/S0168-1699(02)00100-X

    Article  Google Scholar 

  20. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195

  21. Chollet F (2018) Deep learning with Python. Manning Publications Company, United States

    Google Scholar 

  22. Colantoni A, Monarca D, Laurendi V, Villarini M, Gambella F, Cecchini M (2018) Smart machines, remote sensing, precision farming, processes, mechatronic, materials and policies for safety and health aspects. Multidiscipl Digit Publ Inst 8(4):47. https://doi.org/10.3390/agriculture8040047

    Article  Google Scholar 

  23. Cubero S, Aleixos N, Moltó E, Gómez-Sanchis J, Blasco J (2011) Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol 4(4):487–504. https://doi.org/10.1007/s11947-010-0411-8

    Article  Google Scholar 

  24. Cusano C, Napoletano P, Schettini R (2016) Evaluating color texture descriptors under large variations of controlled lighting conditions. JOSA A 33(1):17–30

    Article  Google Scholar 

  25. Cusano C, Napoletano P, Schettini R (2016) Combining multiple features for color texture classification. J Electron Imaging 25(6):061410. https://doi.org/10.1117/1.JEI.25.6.061410

    Article  Google Scholar 

  26. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  27. DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73(3):415–434. https://doi.org/10.1016/j.neuron.2012.01.010

    Article  Google Scholar 

  28. Espejo-Garcia B, Mylonas N, Athanasakos L, Fountas S, Vasilakoglou I (2020) Towards weeds identification assistance through transfer learning. Comput Electron Agric 171:105306. https://doi.org/10.1016/j.compag.2020.105306

  29. Fan S, Li J, Zhang Y, Tian X, Wang Q, He X, Zhang C, Huang W (2020) On line detection of defective apples using computer vision system combined with deep learning methods. J Food Eng 286:110102. https://doi.org/10.1016/j.jfoodeng.2020.110102

    Article  Google Scholar 

  30. Finlayson GD (2000) Computational colour constancy. In: Proceedings 15th international conference on pattern recognition ICPR-2000, Barcelona, pp 191–196. https://doi.org/10.1109/ICPR.2000.905301

  31. Garcia S, Herrera F (2008) An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J Mach Learn Res 9(12):2677–2694

  32. Gómez-Sanchis J, Moltó E, Camps-Valls G, Gómez-Chova L, Aleixos N, Blasco J (2008) Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. J Food Eng 85(2):191–200. https://doi.org/10.1016/j.jfoodeng.2007.06.036

    Article  Google Scholar 

  33. Hacıefendioğlu K, Başağa HB (2021) Concrete road crack detection using deep learning-based faster R-CNN method. Iran J Sci Technol, Trans Civil Eng 46:1621–1633. https://doi.org/10.1007/s40996-021-00671-2

  34. Hao X, Jia J, Gao W, Guo X, Zhang W, Zheng L et al (2020) MFC-CNN: an automatic grading scheme for light stress levels of lettuce (Lactuca sativa L.) leaves. Comput Electron Agric 179:105847. https://doi.org/10.1016/j.compag.2020.105847

    Article  Google Scholar 

  35. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  36. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR, (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:12070580

  37. Hornberg A (2017) Handbook of machine and computer vision: the guide for developers and users: John Wiley & Sons

  38. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al., (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:170404861

  39. Huang M, Lu R (2010) Apple mealiness detection using hyperspectral scattering technique. Postharvest Biol Technol 58(3):168–175. https://doi.org/10.1016/j.postharvbio.2010.08.002

    Article  Google Scholar 

  40. Ijjina EP, Mohan CK, (2014) View and illumination invariant object classification based on 3D color histogram using convolutional neural networks. Asian Conf Comput Vis 316–327. https://doi.org/10.1007/978-3-319-16628-5_23

  41. İnik Ö, Ülker E (2017) Derin öğrenme ve görüntü analizinde kullanılan derin öğrenme modelleri. Journal of Gaziosmanpasa Scientific Research 6(3):85–104

    Google Scholar 

  42. Ismail A, Idris MYI, Ayub MN, Yee L (2018) Vision-based apple classification for smart manufacturing. Sensors 18(12):4353. https://doi.org/10.3390/s18124353

    Article  Google Scholar 

  43. Janowczyk A, Madabhushi A (2016) Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inf 7(1):29. https://doi.org/10.4103/2153-3539.186902

    Article  Google Scholar 

  44. Jarolmasjed S, Espinoza CZ, Sankaran S (2017) Near infrared spectroscopy to predict bitter pit development in different varieties of apples. J Food Meas Charact 11(3):987–993. https://doi.org/10.1007/s11694-017-9473-x

    Article  Google Scholar 

  45. Jiang P, Chen Y, Liu B, He D, Liang C (2019) Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks. IEEE Access 7:59069–59080. https://doi.org/10.1109/ACCESS.2019.2914929

    Article  Google Scholar 

  46. Jiang B, He J, Yang S, Fu H, Li T, Song H, He D (2019) Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues. Artif Intell Agric 1:1–8. https://doi.org/10.1016/j.aiia.2019.02.001

    Article  Google Scholar 

  47. Kafle GK, Khot LR, Jarolmasjed S, Yongsheng S, Lewis K (2016) Robustness of near infrared spectroscopy based spectral features for non-destructive bitter pit detection in honeycrisp apples. Postharvest Biol Technol 120:188–192. https://doi.org/10.1016/j.postharvbio.2016.06.013

    Article  Google Scholar 

  48. Kang J, Gwak J (2021) Ensemble of multi-task deep convolutional neural networks using transfer learning for fruit freshness classification. Multimed Tools Appl 81:22355–22377. https://doi.org/10.1007/s11042-021-11282-4

    Article  Google Scholar 

  49. Khan AI, Quadri SMK, Banday S (2021) Deep learning for apple diseases: classification and identification. Int J Comput Intell Stud 10(1):1–12. https://doi.org/10.1504/IJCISTUDIES.2021.113831

    Article  Google Scholar 

  50. Kızrak MA, Bolat B (2018) Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma. Bilişim Teknolojileri Dergisi 11(3):263–286. https://doi.org/10.17671/gazibtd.419205

    Article  Google Scholar 

  51. Kludt C, Längle T, Beyerer J (2021) Light field illumination: problem-specific lighting adjustment. Tm-Technisches Messen 88(6):330–341. https://doi.org/10.1515/teme-2021-0021

    Article  Google Scholar 

  52. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst 25:1097–1105

    Google Scholar 

  53. Kumar Y, Dubey AK, Arora RR, Rocha A (2020) Multiclass classification of nutrients deficiency of apple using deep neural network. Neural Comput & Applic 34:1–12. https://doi.org/10.1007/s00521-020-05310-x

    Article  Google Scholar 

  54. Lashgari M, Imanmehr A, Tavakoli H (2020) Fusion of acoustic sensing and deep learning techniques for apple mealiness detection. J Food Sci Technol 57(6):2233–2240. https://doi.org/10.1007/s13197-020-04259-y

    Article  Google Scholar 

  55. LeCun Y (1988) A theoretical framework for back-propagation. In: Touresky D, Hinton G, Sejnowski T (eds) Proceedings of the 1988 connectionist models summer school, CMU, Pittsburgh Morgan Kaufmann, pp 21–28

  56. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  57. Li Q, Xu R, Fang Q, Yuan Y, Cao J, Jiang W (2020) Analyses of microstructure and cell wall polysaccharides of flesh tissues provide insights into cultivar difference in mealy patterns developed in apple fruit. Food Chem 321:126707. https://doi.org/10.1016/j.foodchem.2020.126707

    Article  Google Scholar 

  58. Liu L, Shen C, van den Hengel A (2015) The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification. 2015 IEEE conference on computer vision and pattern recognition (CVPR), Boston, MA, USA, pp 4749–4757. https://doi.org/10.1109/CVPR.2015.7299107

    Book  Google Scholar 

  59. Lötze E, Huybrechts C, Sadie A, Theron KI, Valcke RM (2006) Fluorescence imaging as a non-destructive method for pre-harvest detection of bitter pit in apple fruit (Malus domestica Borkh.). Postharvest Biol Technol 40(3):287–294. https://doi.org/10.1016/j.postharvbio.2006.02.004

    Article  Google Scholar 

  60. Lu Y, Lu R (2018) Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithms. Trans ASABE 61(6):1831–1842. https://doi.org/10.13031/trans.12930

    Article  Google Scholar 

  61. Marsland S (2011) Machine learning: an algorithmic perspective. Chapman and Hall/CRC, New York

  62. Mogollon MR, Jara AF, Contreras C, Zoffoli JP (2020) Quantitative and qualitative VIS-NIR models for early determination of internal browning in ‘Cripps Pink’apples during cold storage. Postharvest Biol Technol 161:111060. https://doi.org/10.1016/j.postharvbio.2019.111060

    Article  Google Scholar 

  63. Nachtigall LG, Araujo RM, Nachtigall GR, (2016) Classification of apple tree disorders using convolutional neural networks. 2016 IEEE 28th international conference on tools with artificial intelligence (ICTAI), 472–6. https://doi.org/10.1109/ICTAI.2016.0078.

  64. Nachtigall LG, Araujo RM, Nachtigall GR (2017) Use of images of leaves and fruits of apple trees for automatic identification of symptoms of diseases and nutritional disorders. Int J Monit Surveill Technol Res (IJMSTR) 5(2):1–14. https://doi.org/10.4018/IJMSTR.2017040101

    Article  Google Scholar 

  65. Nicolaï BM, Lötze E, Peirs A, Scheerlinck N, Theron KI (2006) Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biol Technol 40(1):1–6. https://doi.org/10.1016/j.postharvbio.2005.12.006

    Article  Google Scholar 

  66. Noris M (2020) Multi-view light source estimation for automated industrial quality control. Master' thesis, Università Ca'Foscari Venezia

  67. Nuske S, Wilshusen K, Achar S, Yoder L, Narasimhan S, Singh S (2014) Automated visual yield estimation in vineyards. J Field Robot 31(5):837–860. https://doi.org/10.1002/rob.21541

    Article  Google Scholar 

  68. Özden C (2021) Apple leaf disease detection and classification based on transfer learning. Turk J Agric For 45(6):775–783. https://doi.org/10.3906/tar-2010-100

    Article  Google Scholar 

  69. Peng Z, Cai C, (2017) An effective segmentation algorithm of apple watercore disease region using fully convolutional neural networks. 2017 Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC), Kuala Lumpur, 1292–9. https://doi.org/10.1109/APSIPA.2017.8282223.

  70. Rodríguez FJ, García A, Pardo PJ, Chávez F, Luque-Baena RM (2018) Study and classification of plum varieties using image analysis and deep learning techniques. Progress Artif Intell 7(2):119–127. https://doi.org/10.1007/s13748-017-0137-1

    Article  Google Scholar 

  71. Santos L, Santos FN, Oliveira PM, Shinde P, (2019) Deep learning applications in agriculture: a short review. Robot 2019: fourth Iberian robotics conference, 139-51. https://doi.org/10.1007/978-3-030-35990-4_12.

  72. Sharma R, Reddy SVR, Gajanan G (2020) In: Kuswandi B, Siddiqui MW (eds) X-ray imaging for quality detection in fruits and vegetables. In: sensor-based quality assessment Systems for Fruits and Vegetables. Apple academic press, Canada, pp 231–252

    Google Scholar 

  73. Simonyan K, Zisserman A, (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556

  74. Stein M, Bargoti S, Underwood J (2016) Image based mango fruit detection, localisation and yield estimation using multiple view geometry. Sensors 16(11):1915. https://doi.org/10.3390/s16111915

    Article  Google Scholar 

  75. Sun S, Song H, He D, Long Y (2019) An adaptive segmentation method combining MSRCR and mean shift algorithm with K-means correction of green apples in natural environment. Inf Process Agric 6(2):200–215. https://doi.org/10.1016/j.inpa.2018.08.011

    Article  Google Scholar 

  76. Sun Y, Lu R, Lu Y, Tu K, Pan L (2019) Detection of early decay in peaches by structured-illumination reflectance imaging. Postharvest Biol Technol 151:68–78. https://doi.org/10.1016/j.postharvbio.2019.01.011

    Article  Google Scholar 

  77. Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: International conference on machine learning, Atlanta, Georgia, pp 1139–1147

  78. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312. https://doi.org/10.1109/TMI.2016.2535302

    Article  Google Scholar 

  79. Tan M, Le Q, (2019) Efficientnet: rethinking model scaling for convolutional neural networks. Int Conf Mach Learn, 6105–14

  80. Tao Y (1996) Spherical transform of fruit images for on-line defect extraction of mass objects. Opt Eng 35(2):344–350. https://doi.org/10.1117/1.600902

    Article  Google Scholar 

  81. Thenmozhi K, Reddy US (2019) Crop pest classification based on deep convolutional neural network and transfer learning. Comput Electron Agric 164:104906. https://doi.org/10.1016/j.compag.2019.104906

    Article  Google Scholar 

  82. Tian H, Wang T, Liu Y, Qiao X, Li Y (2020) Computer vision technology in agricultural automation—a review. Inf Process Agric 7(1):1–19. https://doi.org/10.1016/j.inpa.2019.09.006

    Article  Google Scholar 

  83. Toivonen PMA, (2003) Postharvest treatments to control oxidative stress in fruits and vegetables. Postharvest Oxidative Stress in Horticultural Crops, 225–46

  84. Toivonen PMA (2004) Postharvest storage procedures and oxidative stress. HortScience 39(5):938–942

    Article  Google Scholar 

  85. Toivonen PMA, Hodges DM (2011) Abiotic stress in harvested fruits and vegetables: abiotic stress in plants-mechanisms and adaptations. InTech, China, pp 39–58

  86. Turkoglu M, Hanbay D, Sengur A, (2019) Multi-model LSTM-based convolutional neural networks for detection of apple diseases and pests. J Ambient Intell Human Comput, 1-11. https://doi.org/10.1007/s12652-019-01591-w

  87. Unay D, Gosselin B (2007) Stem and calyx recognition on ‘Jonagold’apples by pattern recognition. J Food Eng 78(2):597–605. https://doi.org/10.1016/j.jfoodeng.2005.10.038

    Article  Google Scholar 

  88. Wang S-H, Chen Y (2020) Fruit category classification via an eight-layer convolutional neural network with parametric rectified linear unit and dropout technique. Multimed Tools Appl 79(21):15117–15133. https://doi.org/10.1007/s11042-018-6661-6

    Article  Google Scholar 

  89. Wang C, Liu B, Liu L, Zhu Y, Hou J, Liu P, Li X (2021) A review of deep learning used in the hyperspectral image analysis for agriculture. Artif Intell Rev 54:5205–5253. https://doi.org/10.1007/s10462-021-10018-y

  90. Watkins CB (2017) Postharvest Physiological Disorders of Fresh Crops. In: Thomas B, Murray BG, Murphy DJ (eds) Postharvest physiological disorders of fresh crops. In: encyclopedia of applied plant sciences. Elsevier, Oxford, pp 315–322

    Chapter  Google Scholar 

  91. Wu A, Zhu J, Ren T (2020) Detection of apple defect using laser-induced light backscattering imaging and convolutional neural network. Comput Electr Eng 81:106454. https://doi.org/10.1016/j.compeleceng.2019.106454

    Article  Google Scholar 

  92. Yan Q, Yang B, Wang W, Wang B, Chen P, Zhang J (2020) Apple leaf diseases recognition based on an improved convolutional neural network. Sensors 20(12):3535. https://doi.org/10.3390/s20123535

    Article  Google Scholar 

  93. Yang J, Liu M, Lu J, Miao Y, Hossain MA, Alhamid MF (2018) Botanical internet of things: toward smart indoor farming by connecting people, plant, data and clouds. Mob Netw Appl 23(2):188–202. https://doi.org/10.1007/s11036-017-0930-x

    Article  Google Scholar 

  94. Zhang B, Huang W, Li J, Zhao C, Fan S, Wu J, Liu C (2014) Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: a review. Food Res Int 62:326–343. https://doi.org/10.1016/j.foodres.2014.03.012

    Article  Google Scholar 

  95. Zhao W, Yamada W, Li T, Digman M, Runge T (2021) Augmenting crop detection for precision agriculture with deep visual transfer learning—a case study of bale detection. Remote Sens 13(1):23. https://doi.org/10.3390/rs13010023

    Article  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Project at Konya Technical University, Konya, Turkey (No. 201113006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birkan Buyukarikan.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyukarikan, B., Ulker, E. Classification of physiological disorders in apples using deep convolutional neural network under different lighting conditions. Multimed Tools Appl 82, 32463–32483 (2023). https://doi.org/10.1007/s11042-023-14766-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14766-7

Keywords