Skip to main content
Log in

Methods in detection of median filtering in digital images: a survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

When it comes to reducing impulsive noise from digital photos, the Median Filter (MF) is a nonlinear filter that can be employed effectively. This nonlinear filter is used to erase traces left by other linear filters due to the fact that they are nonlinear in nature. The application of a median filter on an image raises questions about the image’s genuineness when it is discovered. For the detection of median filtering, a slew of approaches has been developed. The main purpose of this paper is to explain different parts of median filter forensics, look at some new and existing techniques in median filter forensics, and compare the pros and cons of each technique. We also developed a taxonomy to broadly classify various methods proposed for median filter forensics. In addition, we also discussed and describe the popular testing procedure that researchers in the field are using to evaluate the median filtering detection methods and may be employed as a testing framework for future studies, for other operator detection as well as for general purpose image forensics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Agarwal S, Jung K-H (2021) Hsb-spam: An efficient image filtering detection technique. Appl Sci 11(9) https://www.mdpi.com/2076-3417/11/9/3749

  2. Agarwal S, Chand S, Skarbnik N (2016) SPAM revisited for median filtering detection using higher-order difference. Secur Commun Netw 9:4089–4102. https://doi.org/10.1002/sec.1590

    Article  Google Scholar 

  3. Ahmed S, Islam S (2016) Median filtering detection using variation of neighboring line pairs for image forensics. J Electron Imaging 25(5):1–13. https://doi.org/10.1117/1.JEI.25.5.053039

    Article  Google Scholar 

  4. Ahmed S, Islam S (2018) Median filter detection through streak area analysis. Digit Inv 26:100–106 https://www.sciencedirect.com/science/article/pii/S1742287617303109

    Article  Google Scholar 

  5. Bas P, Furon T (2010) “Bows-2 break our watermarking system (july 2007) [2007-07-10],” [Online]. Available: http://bows2.ec-lille.fr/

  6. Bas P, Furon T (2016) The first IEEE-IFS-TC image forensics challenge, [Online]. Available: http://ifc.recod.ic.unicamp.br/fc.website/index.py. Accessed 03 Mar 2020

  7. Bayar B, Stamm MC (2016) “A deep learning approach to universal image manipulation detection using a new convolutional layer,” in Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, ser. IH;MMSec ‘16. New York, NY, USA: Association for Computing Machinery, p. 5–10. [Online]. Available: https://doi.org/10.1145/2909827.2930786

  8. Bayar B, Stamm MC (2018) Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection. IEEE Trans Inf Forensics Sec 13(11):2691–2706. https://doi.org/10.1109/TIFS.2018.2825953

  9. Bovik AC (1987) Streaking in median filtered images. IEEE Trans Acoust Speech Signal Process ASSP-35(4):181–194

    MATH  Google Scholar 

  10. Cao G, Zhao Y, Ni R, Yu L, Tian H (2010) “Forensic detection of median filtering in digital images,” IEEE International Conference on Multimedia and Expo (ICME), pp. 89–94

  11. Chen C, Ni J (2012) Median filtering detection using edge based prediction matrix. In: Shi YQ, Kim HJ, Perez-Gonzalez F (eds) Digital Forensics and Watermarking. IWDW 2011. Lecture Notes in Computer Science, vol 7128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32205-1_29

  12. Chen C, Ni J, Huang J (2013) Blind detection of median filtering in digital images: A difference domain based approach. IEEE Trans Image Process 22(12):4699–4710 software available at. [Online]. Available: https: //github.com/ChenglongChen/GLF Featuresfor Median Filtering Forensics

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen J, Kang X, Liu Y, Wang ZJ (Nov 2015) Median filtering forensics based on convolutional neural networks. IEEE Signal Process Lett 22(11):1849–1853

    Article  Google Scholar 

  14. Chuang W, Swaminathan A, Wu M (2009) “Tampering identification using empirical frequency response,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1517–1520

  15. Dang-Nguyen D-T, Pasquini C, Conotter V, Boato G (2015) “Raise: A raw images dataset for digital image forensics,” in Proceedings of the 6th ACM Multimedia Systems Conference, ser. MMSys 15. New York, NY, USA: Association for Computing Machinery, pp. 219–224. [Online]. Available: https://doi.org/10.1145/2713168.2713194

  16. H. Farid, “Digital doctoring: how to tell the real from the fake,” Significance, vol. 3, no. 4, pp. 162–166, 2006. Available: https://doi.org/10.1111/j.1740-9713.2006.00197.x

  17. Filler T, Pevný T, Craver S, Ker A (eds) (2011) Information Hiding. IH 2011. Lecture Notes in Computer Science, vol 6958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24178-9_5

  18. Gallagher N, Wise G (1981) A theoretical analysis of the properties of median filters. IEEE Trans Acoust Speech Signal Process 29(6):1136–1141

    Article  Google Scholar 

  19. Gao H, Gao T (2020) Detection of median filtering based on ARMA model and pixel-pair histogram feature of difference image. Multimed Tools Appl 79:12551–12567. https://doi.org/10.1007/s11042-019-08340-3

    Article  Google Scholar 

  20. Gao H, Hu M, Gao T, Cheng R (2019) Robust detection of median filtering based on combined features of difference image. Signal Process Image Commun 72:126–133 http://www.sciencedirect.com/science/article/pii/S0923596518308464

    Article  Google Scholar 

  21. Gloe T, Bohme R (2010) The Dresden image database for benchmarking digital image forensics. J Digit Forensic Pract 3(2–4):150–159

    Article  Google Scholar 

  22. Gorecki T, Undefineduczak M (2013) Linear discriminant analysis with a generalization of the moore-penrose pseudoinverse. Int J Appl Math Comput Sci 23(2):463–471. https://doi.org/10.2478/amcs-2013-0035

  23. Gui X, Li X, Qi W, Yang B (2014) “Blind median filtering detection based on histogram features,” Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA), pp. 1–4

  24. Gupta A, Singhal D (2018) Analytical Global Median Filtering Forensics Based on Moment Histograms. ACM Trans Multimed Comput Commun Appl 14(2):1–23 http://dl.acm.org/citation.cfm?doid=3210458.3176650

    Article  Google Scholar 

  25. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  26. Jain H, Das J, Verma HK, Khanna N (2017) An enhanced statistical approach for median filtering detection using difference image. In: 2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), New Delhi, pp 1–7. https://doi.org/10.1109/ISBA.2017.7947704

  27. Jin X, Jing P, Su Y (2018) AMFNet: an adversarial network for median filtering detection. IEEE Access 6:50459–50467. https://doi.org/10.1109/ACCESS.2018.2867370

  28. B. I. Justusson, Median Filtering: Statistical Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, pp. 161–196. Available: https://doi.org/10.1007/BFb0057597

  29. Kang X, Stamm MC, Peng A, Liu KJR (2012) “Robust median filtering forensics based on the autoregressive model of median filtered residual,” in Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–9

  30. Kang X, Stamm MC, Peng A, Liu KJR (Sept 2013) Robust median filtering forensics using an autoregressive model. IEEE Trans Inf Forensic Secur 8(9):1456–1468

    Article  Google Scholar 

  31. Ke Y, Qin F, Min W, Zhang Q (2015) An efficient blind detection algorithm of median filtered image. Int J Hybrid Inf Technol 8(1):181–192

    Google Scholar 

  32. Kirchner M, Bohme R (2008) Hiding traces of resampling in digital images. IEEE Trans Inf Forensic Secur 3(4):582–592

    Article  Google Scholar 

  33. Kirchner M, Fridrich J (2010) On detection of median filtering in digital images. IS&T/SPIE Electron Imaging:754110–754110

  34. Li H, Luo W, Qiu X, Huang J (2016) “Identification of various image operations using residual-based features,” IEEE Transact Circ Syst Vid Technol

  35. Li W, Ni R, Li X et al (2019) Robust median filtering detection based on the difference of frequency residuals. Multimed Tools Appl 78:8363–8381. https://doi.org/10.1007/s11042-018-6831-6

    Article  Google Scholar 

  36. Liao G-Y, Nodes T, Gallagher N (1985) “Output distributions of two-dimensional median filters,” IEEE Trans Acoust Speech Signal Process, pp. 1280–1295

  37. Liu A, Zhao Z, Zhang C, Su Y (2017) Median filtering forensics in digital images based on frequency-domain features. Multimed Tools Appl 76(21):22119–22132

    Article  Google Scholar 

  38. Mazumdar A, Singh J, Tomar Y. S, Bora PK (2018) “Universal image manipulation detection using deep siamese convolutional neural network,” arXiv preprint arXiv:1808.06323

  39. Ng TT, Chang SF, Sun Q (2004) A data set of authentic and spliced image blocks. Columbia University, ADVENT Technical Report #203-2004-3

  40. Niu Y, Zhao Y, Ni R (2017) Robust median filtering detection based on local difference descriptor. Signal Process Image Commun 53:65–72

    Article  Google Scholar 

  41. Nodes T, Liao G, Gallagher N (1984) “Statistical analysis of two dimensional median filtered images,” in ICASSP ‘84. IEEE Int Conf Acoust Speech Signal Process, vol. 9, pp. 255–258

  42. NRCS, U (2014) Natural resources conservation service photo gallery. United States Department of aAgriculture, Washington, DC

  43. Pasquini C, Boato G, Alajlan N, De Natale FGB (2016) A deterministic approach to detect median filtering in 1d data. IEEE Trans Inf Forensics Secur 11(7):1425–1437

  44. Pevny T, Bas P, Fridrich JJ (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Forensic Secur 5(2):215–224

    Article  Google Scholar 

  45. Piva A (2013) “An overview on image forensics”, ISRN Signal Processing, Hindawi Publishing Corporation, p. 22

  46. Popescu A, Farid H (2005) Exposing digital forgeries by detecting traces of resampling. IEEE Trans Signal Process 53(2):758–767

    Article  MathSciNet  MATH  Google Scholar 

  47. Qureshi MA, Deriche M (2015) A bibliography of pixel-based blind image forgery detection techniques. Signal Process Image Commun 39:46–74 Available: https://www.sciencedirect.com/science/article/pii/S0923596515001393

    Article  Google Scholar 

  48. Rabiner L, Sambur M, Schmidt C (1975) Applications of a nonlinear smoothing algorithm to speech processing. IEEE Trans Acoust Speech Signal Process 23(6):552–557

  49. Rhee KH (2015) “Median filtering detection using variation of neighboring line pairs for image forensic,” in Consumer Electronics-Berlin (ICCE-Berlin), 2015 IEEE 5th International Conference on. IEEE, pp. 103–107

  50. Rhee KH (2019) Forensic detection using bit-planes slicing of median filtering image. IEEE Access 7:92586–92597

    Article  Google Scholar 

  51. Rhee KH (2019) Improvement feature vector: autoregressive model of median filter residual. IEEE Access 7:77524–77540

    Article  Google Scholar 

  52. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, … Fei-Fei L (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  53. Schaefer G, Stich M (2003) UCID: an uncompressed color image database. In: Proc. SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia 2004, pp 472-480. https://doi.org/10.1117/12.525375

  54. Stamm MC, Wu M, Liu KJR (2013) Information forensics: an overview of the first decade. IEEE Access 1:167–200

    Article  Google Scholar 

  55. Swaminathan A, Wu M, Liu KJR (2008) Digital image forensics via intrinsic fingerprints. IEEE Trans Inf Forensic Secur 3(1):101–117

    Article  Google Scholar 

  56. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  57. H. Tang, R. Ni, Y. Zhao, and X. Li, “Median filtering detection of small-size image based on cnn,” J Visual Commun Image Represent, vol. 51, pp. 162–168, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S104732031830018X

  58. Tukey J (1971) Exploratory data analysis. MA: Addison-Wesley

  59. Tyan S (1981) “Median filtering: Deterministic properties,” in Two-Dimensional Digital Signal Prcessing II. Springer, pp. 197–217

  60. Wang D-p, Gao T, Yang F (2018) A forensic algorithm against median filtering based on coefficients of image blocks in frequency domain. Multimed Tools Appl 77(18):23411–23427. https://doi.org/10.1007/s11042-018-5651-z

    Article  Google Scholar 

  61. J. Wang, Q. Ni, Y. Zhang, X. Luo, Y. Shi, J. Zhai, and S. K. Jha, “Median filtering detection based on quaternion convolutional neural network,” Comput Mater Continua, vol. 65, no. 1, pp. 929–943, 2020. [Online]. Available: http://www.techscience.com/cmc/v65n1/39604

  62. Wu R, Li X, Yang B (2011) Identifying computer generated graphics via histogram features. In: 2011 18th IEEE International Conference on Image Processing, pp 1933–1936. https://doi.org/10.1109/ICIP.2011.6115849

  63. Yang J, Ren H, Zhu G, Huang J, Shi Y-Q (2018) Detecting median filtering via two-dimensional AR models of multiple filtered residuals. Multimed Tools Appl 77(7):7931–7953. https://doi.org/10.1007/s11042-017-4691-0

    Article  Google Scholar 

  64. Yang L, Yang P, Ni R, Zhao Y (2020) Xception-based general forensic method on small-size images. In: Pan J-S, Li J, Tsai P-W, Jain LC (eds) Advances in intelligent information hiding and multimedia signal processing. Springer Singapore, Singapore, pp 361–369

    Chapter  Google Scholar 

  65. Yu L, Zhang Y, Han H, Zhang L, Wu F (2019) Robust median filtering forensics by cnn-based multiple residuals learning. IEEE Access 7:120594–120602

    Article  Google Scholar 

  66. Yuan H-D (2011) Blind forensics of median filtering in digital images. IEEE Trans Inf Forensics Secur 6(4):1335–1345. https://doi.org/10.1109/TIFS.2011.2161761

  67. Zhang Y, Li S, Wang S, Shi YQ (2014) Revealing the traces of median filtering using high-order local ternary patterns. IEEE Signal Process Lett 21(3):275–279

    Article  Google Scholar 

  68. Zhang J, Liao Y, Zhu X, Wang H, Ding J (2020) A deep learning approach in the discrete cosine transform domain to median filtering forensics. IEEE Signal Process Lett 27:276–280

    Article  Google Scholar 

  69. Zhu BB, Swanson MD, Tewfik AH (2004) When seeing isn’t believing [multimedia authentication technologies]. IEEE Signal Process Mag 21(2):40–49

    Article  Google Scholar 

  70. Zhu T, Gu H, Chen Z (2022) A median filtering forensics CNN approach based on local binary pattern. In: Liu Q, Liu X, Chen B, Zhang Y, Peng J (eds) Proceedings of the 11th International Conference on Computer Engineering and Networks. Lecture Notes in Electrical Engineering, vol 808. Springer, Singapore, pp 258-266. https://doi.org/10.1007/978-981-16-6554-7_30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Ahmed.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Islam, S. Methods in detection of median filtering in digital images: a survey. Multimed Tools Appl 82, 43945–43965 (2023). https://doi.org/10.1007/s11042-023-14835-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14835-x

Keywords

Navigation