Skip to main content

Advertisement

Log in

Recent advancement in learning methodology for segmenting brain tumor from magnetic resonance imaging -a review

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Glioblastomata are the most generally perceived fundamental brain malignant tumors known as Gliomas, with different shape, size & sub regions. It is hard to segment all three different sub regions perfectly. In any case, when the exact segmentation is perceived at the beginning stage, appropriate treatment should be possible. To overcome this issue, Robust learning strategy is needed for brain tumor segmentation to distinguish all three different regions including shape and size which help the specialist to plan for a surgery. Comparative studies for brain tumor segmentation & detection using machine learning & deep Learning methods are presented in this survey. Simulation results of some widely used deep learning methods are also covered & discussed. Our survey covers 107 studies using different learning methods along with Methodology, Dataset and Dice similarity coefficient Achieved. Out of 107 review studies, Robust unpaired generative adversarial network gives better performance for all three regions by securing more than 90% dice score than the other existing schemes but with large computation cost. Ensembled 3D variants, Hybrid convolutional neural network & U-Net variants gives better segmentation compared to existing studies with moderate computational cost. The existing methods was able to decide tumor yet doesn’t find volumetric measures of tumor in three orthogonal planes. In any case, regardless of segmentation accuracy, the current techniques don’t meet the robustness levels needed for patient-focused clinical use. Finally, the paper concludes with some research directions & research gaps that should be followed & solved in the future for further improvement in medical image segmentation & detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SVM:

Support Vector Machine

GNN:

Graphical Neural Network

CNN:

Convolution neural network

MRI:

Magnetic resonance imaging

CT:

Computerized tomography

ADC:

Apparent diffusion coefficient

HGG:

High-grade glioma

LGG:

Low-grade glioma

NET:

Nonenhanced tumor

ED:

Edema

NCR:

Necrotic core

RNN:

Recurrent neural network

GAN:

Generative adversarial network

MICCAI:

The Medical Image Computing and Computer Assisted Intervention Society

NIfTI:

Neuroimaging Informatics Technology Initiative

PubMed:

Public/Publisher MEDLINE

MEDLINE:

Medical Literature Analysis and Retrieval System Online

CSF:

Cerebrospinal Fluid

GM:

Gray Matter

WM:

White Matter

ReLU:

Rectified Linear Unit

ROI:

Region of interest

LSTM:

Long short-term memory

CRF:

Conditional Random Fields

HD:

Hausdorff Distance

CLSTM:

Contextual LSTM

GRU:

Gated recurrent unit

FCN:

Fully Convolutional Network

FCNN:

Fully convolutional neural network

WT:

Whole Tumor

ET:

Enhancing Tumor

TC:

Tumor Core

HNF:

Hybrid High-resolution and Non-local Feature Network

GPU:

Graphics processing unit

DRL:

Deep reinforcement learning

SLIC:

Simple Linear Iterative Clustering

References

  1. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647. https://doi.org/10.1109/34.295913

  2. Agravat RR, Raval MS (2018) Deep learning for automated brain tumor segmentation in mri images. In: Soft computing based medical image analysis. Academic Press, pp 183–201. https://doi.org/10.1016/B978-0-12-813087-2.00010-5

  3. Agravat RR, Raval MS (2019) Brain tumor segmentation and survival prediction. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science, vol 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_32

  4. Ahuja S, Panigrahi BK, Gandhi T (2020) Transfer learning-based brain tumor detection and segmentation using superpixel technique. In: 2020 international conference on contemporary computing and applications (IC3A), pp 244–249. https://doi.org/10.1109/IC3A48958.2020.233306

  5. Akil M, Saouli R, Kachouri R (2020) Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy. Med Image Anal 63:101692

    Article  Google Scholar 

  6. Alqahtani H, Kavakli-Thorne M, Kumar G (2021) Applications of generative adversarial networks (GANs): an updated review. Arch Computat Methods Eng 28:525–552. https://doi.org/10.1007/s11831-019-09388-y

    Article  MathSciNet  Google Scholar 

  7. Alqazzaz S, Sun X, Yang X, Nokes L (2019) Automated brain tumor segmentation on multi-modal MR image using SegNet. Computation Vis Med 5(2):209–219

    Article  Google Scholar 

  8. Amiri M, Brooks R, Rivaz H (2020) Fine-tuning U-net for ultrasound image segmentation: different layers, different outcomes. IEEE Trans Ultrason Ferroelectr Freq Control 67(12):2510–2518

    Article  Google Scholar 

  9. Anand VK, Grampurohit S, Aurangabadkar P, Kori A, Khened M, Bhat RS, Krishnamurthi G (2020) Brain tumor segmentation and survival prediction using automatic hard mining in 3D CNN architecture. In international MICCAI Brainlesion workshop 2020 Oct 4 (pp. 310-319). Springer, Cham

    Google Scholar 

  10. Andermatt S, Pezold S, Cattin PC (2017) Automated segmentation of multiple sclerosis lesions using multi-dimensional gated recurrent units. In international MICCAI Brainlesion workshop 2017 Sep 14 (pp. 31-42). Springer, Cham

    Google Scholar 

  11. Ashburner J, Friston K (2003) Spatial normalisation using basis functions. Human Brain Function (2nd Edn). https://doi.org/10.1016/B978-012264841-0/50035-4

  12. Aswani K, Menaka D (2021) A dual autoencoder and singular value decomposition-based feature optimization for the segmentation of brain tumor from MRI images. BMC Med Imaging 21(1):1–1

    Article  Google Scholar 

  13. Bahadure NB, Ray AK, Thethi HP (2017) Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int J Biomed Imaging 6:2017

    Google Scholar 

  14. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M, Prastawa M, Alberts E, Lipkova J, Freymann J, Kirby J, Bilello M, Fathallah-Shaykh H, Wiest R, Kirschke J, Chen Z (2019) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. https://doi.org/10.48550/arXiv.1811.02629

  15. Ballestar LM, Vilaplana V (2020) Brain tumor segmentation using 3D-CNNs with uncertainty estimation. ArXiv, abs/2009.12188

  16. Bauer S, Nolte LP, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In international conference on medical image computing and computer-assisted intervention 2011 Sep 18 (pp. 354-361). Springer, Berlin, Heidelberg

  17. Beers A, Chang K, Brown J, Sartor E, Mammen CP, Gerstner E, Rosen B, Kalpathy-Cramer J (2017) Sequential 3D U-nets for biologically-informed brain tumor segmentation. ArXiv, abs/1709.02967

  18. Ben Rabeh A, Benzarti F, Amiri H (2017 Mar) Segmentation of brain MRI using active contour model. Int J Imaging Syst Technol 27(1):3–11

  19. Bhalgat Y, Shah M, Awate SP (2018) Annotation-cost minimization for medical image segmentation using suggestive mixed supervision fully convolutional networks. ArXiv, abs/1812.11302

  20. Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239

    Article  Google Scholar 

  21. Bukhari ST, Mohy-ud-Din H (2022) E1D3 U-Net for brain tumor segmentation: submission to the RSNA-ASNR-MICCAI BraTS 2021 challenge. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_25

  22. Cabezas M, Valverde S, González-Villà S, Clérigues A, Salem M, Kushibar K, Bernal J, Oliver A, Lladó X (2018) Survival prediction using ensemble tumor segmentation and transfer learning. ArXiv, abs/1810.04274

  23. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838

    Article  MATH  Google Scholar 

  24. Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function. ArXiv, abs/1707.04912

  25. Cancer (2016) Net editorial board. brain tumor: statistics | Cancer. Net [Internet] [cited 2021 Jun 10]. pp 1–3. Available from: https://www.cancer.net/cancer-types/brain-tumor/statistics

  26. Casamitjana A, Catà M, Sánchez I, Combalia M, Vilaplana V (2018) Cascaded V-net using ROI masks for brain tumor segmentation. InInternational MICCAI Brainlesion workshop 2017 Sep 14 (pp. 381-391). Springer, Cham

    Google Scholar 

  27. Chaibou MS, Conze PH, Kalti K, Solaiman B, Mahjoub MA (2017) Adaptive strategy for superpixel-based region-growing image segmentation. J Electron Imaging 26(6):061605

    Article  Google Scholar 

  28. Chang PD Fully convolutional deep residual neural networks for brain tumor segmentation. In international workshop on Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries 2016 Oct 17 (pp. 108-118). Springer, Cham

  29. Chang J, Zhang L, Gu N, Zhang X, Ye M, Yin R, Meng Q (2018) A mix-pooling CNN architecture with FCRF for brain tumor segmentation. J Vis Commun Image Represent 58. https://doi.org/10.1016/j.jvcir.2018.11.047

  30. Che T, Li Y, Jacob AP, Bengio Y, Li W (2016) Mode regularized generative adversarial networks. ArXiv, abs/1612.02136

  31. Chen J, Yang L, Zhang Y, Alber M, Chen DZ (2016) Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS'16). Curran Associates Inc., Red Hook, pp 3044–3052

  32. Chen W, Zhang Y, He J, Qiao Y, Chen Y, Shi H, Tang X (2018) W-net: bridged U-net for 2D medical image segmentation. ArXiv, abs/1807.04459

  33. Chen S, Ding C, Liu M (2019) Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn 88:90–100. https://doi.org/10.1016/j.patcog.2018.11.009

    Article  Google Scholar 

  34. Chen C, Liu X, Ding M, Zheng J, Li J (2019) 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In international conference on medical image computing and computer-assisted intervention 2019 Oct 13 (pp. 184-192). Springer, Cham

    Google Scholar 

  35. Chihati S, Gaceb D (2020) A review of recent progress in deep learning-based methods for MRI brain tumor segmentation. In: 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, pp 149–154. https://doi.org/10.1109/ICICS49469.2020.239550

  36. Dalca AV, Balakrishnan G, Guttag J, Sabuncu MR (2018) Unsupervised learning for fast probabilistic diffeomorphic registration. In international conference on medical image computing and computer-assisted intervention 2018 Sep 16 (pp. 729-738). Springer, Cham

    Google Scholar 

  37. Dittimi TV, Suen CY (2020) Single image super-resolution for medical image applications. In: Pattern Recognition and Artificial Intelligence: International Conference, ICPRAI 2020, Zhongshan, China, October 19–23, 2020, Proceedings. Springer-Verlag, Berlin, Heidelberg, pp 660–666. https://doi.org/10.1007/978-3-030-59830-3_57

  38. Domadia SG, Zaveri T (2011) Comparative analysis of unsupervised and supervised image classification techniques. In: Proceeding of National Conference on Recent Trends in Engineering & Technology, pp 1–5

  39. Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In annual conference on medical image understanding and analysis 2017 Jul 11 (pp. 506–517). Springer, Cham

    Google Scholar 

  40. Duan J, Mao S, Jin J, Zhou Z, Chen L, Chen CP (2021) A novel GA-based optimized approach for regional multimodal medical image fusion with Superpixel segmentation. IEEE Access 9:96353–96366

    Article  Google Scholar 

  41. El-Dahshan ES, Mohsen HM, Revett K, Salem AB (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5545. https://doi.org/10.1016/j.eswa.2014.01.021

    Article  Google Scholar 

  42. Gao Y, Tang Z, Zhou M, Metaxas D (2021) Enabling data diversity: efficient automatic augmentation via regularized adversarial training. In: Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings. Springer-Verlag, Berlin, Heidelberg, pp 85–97. https://doi.org/10.1007/978-3-030-78191-0_7

  43. Ghosh A, Kulharia V, Namboodiri V, Torr P, Dokania P (2018) Multi-agent diverse generative adversarial networks, pp 8513–8521. https://doi.org/10.1109/CVPR.2018.00888

  44. Goetz M, Weber C, Binczyk F, Polanska J, Tarnawski R, Bobek-Billewicz B, Koethe U, Kleesiek J, Stieltjes B, Maier-Hein KH (2016) DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated MR Images. IEEE Trans Med Imaging 35(1):184–196. https://doi.org/10.1109/TMI.2015.2463078

  45. Golan R, Jacob C, Denzinger J (2016) Lung nodule detection in CT images using deep convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, pp 243–250. https://doi.org/10.1109/IJCNN.2016.7727205

  46. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y (2014) Generative Adversarial Nets. NIPS

  47. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438

    Article  Google Scholar 

  48. Haque IR, Neubert J (2020) Deep learning approaches to biomedical image segmentation. Inf Med Unlocked 18:100297

    Article  Google Scholar 

  49. Hasan AM, Meziane F, Aspin R, Jalab HA (2016) Segmentation of brain tumors in MRI images using three-dimensional active contour without edge. Symmetry 8(11):132. https://doi.org/10.3390/sym8110132

  50. Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D (2022) Swin UNETR: swin transformers for semantic segmentation of brain tumors in mri images. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_22

  51. Havaei M, Guizard N, Chapados N, Bengio Y (2016) Hemis: hetero-modal image segmentation. InInternational conference on medical image computing and computer-assisted intervention 2016 Oct 17 (pp. 469-477). Springer, Cham

    Google Scholar 

  52. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017 Jan 1) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

  53. He K, Ji W, Zhou T, Li Z, Huo J, Zhang X, Gao Y, Shen D, Zhang B, Zhang J (2021) Cross-modality brain tumor segmentation via bidirectional global-to-local unsupervised domain adaptation. ArXiv abs/2105.07715: n. pag

  54. Hesamian MH, Jia W, He X, Kennedy P (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 32(4):582–596

    Article  Google Scholar 

  55. Hu Y, Xia Y (2018) 3D deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science, vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_36

  56. Hung M-C, Wu J, Chang JH, Yang D-L (2005) An efficient k-means clustering algorithm using simple partitioning. J Inf Sci Eng 21:1157–1177

  57. Hussain A, Khunteta A (2020) Semantic segmentation of brain tumor from MRI images and SVM classification using GLCM features In: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, pp 38–43. https://doi.org/10.1109/ICIRCA48905.2020.9183385

  58. Hussain S, Anwar SM, Majid M (2018) Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261. https://doi.org/10.1016/j.neucom.2017.12.032

    Article  Google Scholar 

  59. Ilunga-Mbuyamba E, Cruz-Duarte JM, Avina-Cervantes JG, Correa-Cely CR, Lindner D, Chalopin C (2016) Active contours driven by cuckoo search strategy for brain tumour images segmentation. Expert Syst Appl 56:59–68. https://doi.org/10.1016/j.eswa.2016.02.048

  60. Imtiaz S, Rifat SA, Fattah, Wahid KA (2020) Automated Brain Tumor Segmentation Based on Multi-Planar Superpixel Level Features Extracted From 3D MR Images. IEEE Access 8:25335–25349. https://doi.org/10.1109/ACCESS.2019.2961630

    Article  Google Scholar 

  61. Iqbal S, Ghani Khan MU, Saba T, Mehmood Z, Javaid N, Rehman A, Abbasi R (2019) Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation. Microsc Res Tech 82(8):1302–1315

    Article  Google Scholar 

  62. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. In international MICCAI Brainlesion workshop 2017 Sep 14 (pp. 287-297). Springer, Cham

    Google Scholar 

  63. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2018) No new net. In international MICCAI Brainlesion workshop 2018 Sep 16 (pp. 234-244). Springer, Cham

    Google Scholar 

  64. Isensee F, Jäger PF, Full PM, Vollmuth P, Maier-Hein KH (2020) nnU-Net for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science, vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_11

  65. Jesson A, Arbel T (2018) Brain tumor segmentation using a 3D FCN with multi-scale loss. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science, vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_34

  66. Jia H, Cai W, Huang H, Xia Y (2020) H2NF-Net for brain tumor segmentation using multimodal MR imaging: 2nd place solution to BraTS challenge 2020 segmentation task. ArXiv, abs/2012.15318

  67. Jiang Z, Ding C, Liu M, Tao D (2020) Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science, vol 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_22

  68. Juarez AG, Selvan R, Saghir Z, de Bruijne M (2019) A joint 3D UNet-graph neural network-based method for airway segmentation from chest CTs. In international workshop on machine learning in medical imaging 2019 Oct 13 (pp. 583-591). Springer, Cham

    Google Scholar 

  69. Jungo A, McKinley R, Meier R, Knecht U, Vera L, Pérez-Beteta J, Molina-García D, Pérez-García VM, Wiest R, Reyes M (2018) Towards uncertainty-assisted brain tumor segmentation and survival prediction. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science, vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_40

  70. Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori AV, Criminisi A, Rueckert D, Glocker B (2016) DeepMedic for brain tumor segmentation. In international workshop on Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries 2016 Oct 17 (pp. 138-149). Springer, Cham

    Google Scholar 

  71. Kamnitsas K, Bai W, Ferrante E, McDonagh S, Sinclair M, Pawlowski N, Rajchl M, Lee M, Kainz B, Rueckert D, Glocker B (2017) Ensembles of multiple models and architectures for robust brain tumour segmentation. In international MICCAI brainlesion workshop 2017 Sep 14 (pp. 450-462). Springer, Cham

    Google Scholar 

  72. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  Google Scholar 

  73. Karimi D, Salcudean SE (2019) Reducing the hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans Med Imaging 39(2):499–513

    Article  Google Scholar 

  74. Khosravanian A, Rahmanimanesh M, Keshavarzi P, Mozaffari S (2021) Fast level set method for glioma brain tumor segmentation based on superpixel fuzzy clustering and lattice boltzmann method. Comput Methods Prog Biomed 198:105809

    Article  Google Scholar 

  75. Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 129:460–469

    Article  Google Scholar 

  76. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 46(3):786–802

    Article  Google Scholar 

  77. Kong X, Sun G, Wu Q, Liu J, Lin F (2018) Hybrid pyramid u-net model for brain tumor segmentation. In international conference on intelligent information processing 2018 Oct 19 (pp. 346-355). Springer, Cham

    Google Scholar 

  78. Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, Rueckert D (2018) Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169:431–442. https://doi.org/10.1016/j.neuroimage.2017.12.052

  79. Lachinov D, Shipunova E, Turlapov V (2019) Knowledge distillation for brain tumor segmentation. In international MICCAI Brainlesion workshop 2019 Oct 17 (pp. 324-332). Springer, Cham

    Google Scholar 

  80. Le TH, Gummadi R, Savvides M (2018) Deep recurrent level set for segmenting brain tumors. In international conference on medical image computing and computer-assisted intervention 2018 Sep 16 (pp. 646-653). Springer, Cham

    Google Scholar 

  81. Levy J, Haudenschild C, Barwick C, Christensen B, Vaickus L (2020) Topological feature extraction and visualization of whole slide images using graph neural networks. In BIOCOMPUTING 2021: Proceedings of the Pacific Symposium 2020 (pp. 285–296)

  82. Li Y, Jia F, Qin J (2016) Brain tumor segmentation from multimodal magnetic resonance images via sparse representation. Artif Intell Med 73:1–3

    Article  Google Scholar 

  83. Li Z, Wang Y, Yu J (2017) Brain tumor segmentation using an adversarial network. In international MICCAI brainlesion workshop 2017 Sep 14 (pp. 123-132). Springer, Cham

    Google Scholar 

  84. Li K, Yu L, Wang S, Heng P-A (2020) Towards Cross-Modality Medical Image Segmentation with Online Mutual Knowledge Distillation. Proceedings of the AAAI Conference on Artificial Intelligence 34:775–783. https://doi.org/10.1609/aaai.v34i01.5421

  85. Li Y, Hu G,Wang Y, Hospedales T, Robertson NM, Yang Y (2020) Differentiable automatic data augmentation. In: Vedaldi A, Bischof H, Brox T, Frahm JM (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_35

  86. Li H, Wei D, Cao S, Ma K, Wang L, Zheng Y (2020) Superpixel-guided label softening for medical image segmentation. In international conference on medical image computing and computer-assisted intervention 2020 Oct 4 (pp. 227-237). Springer, Cham

    Google Scholar 

  87. Lin CW, Hong Y, Liu J (2021) Aggregation-and-attention network for brain tumor segmentation. BMC Med Imaging 21(1):1–2

    Article  Google Scholar 

  88. Liu Z, Chen L, Tong L, Zhou F, Jiang Z, Zhang Q, Shan C, Wang Y, Zhang X, Li L, Zhou H (2020) Deep learning based brain tumor segmentation: a survey. Complex Intell Syst. https://doi.org/10.1007/s40747-022-00815-5

  89. Liu H, Wang H, Wu Y, Xing L (2020) Superpixel region merging based on deep network for medical image segmentation. ACM Trans Intell Syst Technol (TIST) 11(4):1–22

    Article  Google Scholar 

  90. Liu SA, Xu H, Liu Y, Xie H (2020) Improving brain tumor segmentation with dilated pseudo-3D convolution and multi-direction fusion. In international conference on multimedia modeling 2020 Jan 5 (pp. 727-738). Springer, Cham

    Google Scholar 

  91. Lok KH, Shi L, Zhu X, Wang D (2017) Fast and robust brain tumor segmentation using level set method with multiple image information. J X-ray Sci Technol 25(2):301–312

    Google Scholar 

  92. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, pp 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965

  93. Lopez MM, Ventura J (2017) Dilated convolutions for brain tumor segmentation in mri scans. InInternational MICCAI Brainlesion workshop 2017 Sep 14 (pp. 253-262). Springer, Cham

    Google Scholar 

  94. Luc P, Couprie C, Chintala S, Verbeek J (2016) Semantic segmentation using adversarial networks. ArXiv, abs/1611.08408

  95. Luu HM, Park SH (2022) Extending nn-UNet for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_16

  96. Ma C, Luo G, Wang K (2018) Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images. IEEE Trans Med Imaging 37(8):1943–1954

    Article  Google Scholar 

  97. Mahata N, Kahali S, Adhikari SK, Sing JK (2018) Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation. Appl Soft Comput 68:586–596

    Article  Google Scholar 

  98. McKinley R, Meier R, Wiest R (2018) Ensembles of densely connected CNNs with label-uncertainty for brain tumor segmentation. In international MICCAI Brainlesion workshop 2018 Sep 16 (pp. 456-465). Springer, Cham

    Google Scholar 

  99. McKinley R, Rebsamen M, Meier R, Wiest R (2019) Triplanar ensemble of 3d-to-2d cnns with label-uncertainty for brain tumor segmentation. In international MICCAI Brainlesion workshop 2019 Oct 17 (pp. 379-387). Springer, Cham

    Google Scholar 

  100. Meier R, Knecht U, Loosli T, Bauer S, Slotboom J, Wiest R, Reyes M (2016) Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry. Sci Rep 6(1):1–1

    Article  Google Scholar 

  101. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  102. Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), Stanford, pp 565–571. https://doi.org/10.1109/3DV.2016.79

  103. Milletari F, Ahmadi SA, Kroll C, Plate A, Rozanski V, Maiostre J, Levin J, Dietrich O, Ertl-Wagner B, Bötzel K, Navab N (2017) Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102

    Article  Google Scholar 

  104. Mlynarski P, Delingette H, Criminisi A, Ayache N (2019) 3D convolutional neural networks for tumor segmentation using long-range 2D context. Comput Med Imaging Graph 73:60–72. https://doi.org/10.1016/j.compmedimag.2019.02.001

    Article  Google Scholar 

  105. Mlynarski P, Delingette H, Criminisi A, Ayache N (2019) Deep learning with mixed supervision for brain tumor segmentation. J Med Imaging (Bellingham) 6(3):034002. https://doi.org/10.1117/1.JMI.6.3.034002

  106. Moeskops P, Viergever MA, Mendrik AM, De Vries LS, Benders MJ, Išgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261

    Article  Google Scholar 

  107. Mou L, Zhao Y, Fu H, Liu Y, Cheng J, Zheng Y, Su P, Yang J, Chen L, Frangi AF, Akiba M (2021) CS2-net: deep learning segmentation of curvilinear structures in medical imaging. Med Image Anal 67:101874

    Article  Google Scholar 

  108. Myronenko A (2019) 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science, vol 11384. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_28

  109. Nalwade A, Kisa J (2021) Experimenting with knowledge distillation techniques for performing brain tumor segmentation. ArXiv, abs/2105.11486

  110. Nema S, Dudhane A, Murala S, Naidu S (2020) RescueNet: an unpaired GAN for brain tumor segmentation. Biomed Signal Process Control 55:101641

    Article  Google Scholar 

  111. Noori M, Bahri A, Mohammadi K (2019) Attention-Guided Version of 2D UNet for Automatic Brain Tumor Segmentation. In: 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, pp. 269-275. https://doi.org/10.1109/ICCKE48569.2019.8964956

  112. Pawar K, Chen Z, Shah NJ, Egan G (2018) Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science, vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_23

  113. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans Med Imaging 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

  114. Petit O, Thome N, Rambour C, Themyr L, Collins T et al. (2021) U-Net transformer: self and cross attention for medical image segmentation. MICCAI workshop MLMI, Sep 2021, Strasbourg (virtuel), France. ⟨hal-03337089⟩

  115. Pinto A, Pereira S, Dinis H, Silva CA, Rasteiro DM (2015) Random decision forests for automatic brain tumor segmentation on multi-modal MRI images. In 2015 IEEE 4th Portuguese meeting on bioengineering (ENBENG) 2015 Feb 26 (pp. 1-5). IEEE

  116. Pontalba JT, Gwynne-Timothy T, David E, Jakate K, Androutsos D, Khademi A (2019 Nov 1) Assessing the impact of color normalization in convolutional neural network-based nuclei segmentation frameworks. Front Bioeng Biotechnol 7:300

  117. Poudel RP, Lamata P, Montana G (2016) Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In reconstruction, segmentation, and analysis of medical images 2016 Oct 17 (pp. 83-94). Springer, Cham

    Google Scholar 

  118. Praveen GB, Agrawal A (2015) Hybrid approach for brain tumor detection and classification in magnetic resonance images. In: 2015 Communication, Control and Intelligent Systems (CCIS), Mathura, India, pp 162–166. https://doi.org/10.1109/CCIntelS.2015.7437900

  119. Punn NS, Agarwal S (2021) Multi-modality encoded fusion with 3D inception U-net and decoder model for brain tumor segmentation. Multimed Tools Appl 80(20):30305–30320

    Article  Google Scholar 

  120. Puybareau E, Tochon G, Chazalon J, Fabrizio J (2018) Segmentation of gliomas and prediction of patient overall survival: a simple and fast procedure. In international MICCAI Brainlesion workshop 2018 Sep 16 (pp. 199-209). Springer, Cham

    Google Scholar 

  121. Qin T, Wang Z, He K, Shi Y, Gao Y, Shen D (2020) Automatic data augmentation via deep reinforcement learning for effective kidney tumor segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, pp 1419–1423. https://doi.org/10.1109/ICASSP40776.2020.9053403

  122. Rahman Siddiquee MM, Myronenko A (2022) Redundancy reduction in semantic segmentation of 3D brain tumor MRIs. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_15

  123. Raileanu R, Goldstein M, Yarats D, Kostrikov I, Fergus R (2021) Automatic Data augmentation for generalization in reinforcement learning. In: Ranzato MA, Beygelzimer A, Dauphin Y, Liang PS, Wortman Vaughan J (eds) Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021. (Advances in Neural Information Processing Systems; vol 7). Neural information processing systems foundation, pp 5402–5415

  124. Rajinikanth V, Kadry S, Nam Y (2021) Convolutional-neural-network assisted segmentation and SVM classification of brain tumor in clinical MRI slices. Inf Technol Control 50(2):342–356

  125. Ranjbarzadeh R, Kasgari AB, Ghoushchi SJ, Anari S, Naseri M, Bendechache M (2021) Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep 11(1):1–7

    Article  Google Scholar 

  126. Razzak MI, Imran M, Xu G (2018) Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks. IEEE J Biomed Health Inf 23(5):1911–1919

    Article  Google Scholar 

  127. Rebsamen M, Knecht U, Reyes M, Wiest R, Meier R, McKinley R (2019) Divide and conquer stratifying training data by tumor grade improves deep learning-based brain tumor segmentation. Front Neurosci 13:1182

    Article  Google Scholar 

  128. Rezaei M, Harmuth K, Gierke W, Kellermeier T, Fischer M, Yang H, Meinel C (2018) A conditional adversarial network for semantic segmentation of brain tumor. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science, vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_21

  129. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

  130. Salman YM (2009) Modified technique for volumetric brain tumor measurements. J Biomed Sci Eng 2(1):16–19. https://doi.org/10.4236/jbise.2009.21003

  131. Sanjay Kumar CK, Phaneendra HD (2020) Categorization of Brain Tumors using SVM with Hybridized Local-Global Features. In: 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, pp 311–314. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00058

  132. Saouli R, Akil M, Kachouri R (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Methods Prog Biomed 166:39–49

    Article  Google Scholar 

  133. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80

    Article  Google Scholar 

  134. Sert E, Özyurt F, Doğantekin A (2019) A new approach for brain tumor diagnosis system: single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Med Hypotheses 133:109413

    Article  Google Scholar 

  135. Shah MP, Merchant SN, Awate SP (2018) MS-net: mixed-supervision fully convolutional networks for full-resolution segmentation. In international conference on medical image computing and computer-assisted intervention 2018 Sep 16 (pp. 379-387). Springer, Cham

    Google Scholar 

  136. Shah S, Ghosh P, Davis LS, Goldstein T (2018) Stacked U-Nets: a no-frills approach to natural image segmentation. ArXiv, abs/1804.10343

  137. Shen H, Wang R, Zhang J, McKenna SJ (2017) Boundary-aware fully convolutional network for brain tumor segmentation. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins D, Duchesne S (eds) Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017. MICCAI 2017. Lecture Notes in Computer Science, vol 10434. Springer, Cham. https://doi.org/10.1007/978-3-319-66185-8_49

  138. Shih FY, Cheng S (2005 Sep 20) Automatic seeded region growing for color image segmentation. Image Vis Comput 23(10):877–886

  139. Shin SY, Lee S, Yun ID, Lee KM (2019) Deep vessel segmentation by learning graphical connectivity. Med Image Anal 58:101556

    Article  Google Scholar 

  140. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556

  141. Sinha A, Dolz J (2020) Multi-scale self-guided attention for medical image segmentation. IEEE J Biomed Health Inf 25(1):121–130

    Article  Google Scholar 

  142. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg 12(2):183–203

    Article  Google Scholar 

  143. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X (2018) Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput Methods Prog Biomed 157:69–84

    Article  Google Scholar 

  144. Vaidhya K, Thirunavukkarasu S, Alex V, Krishnamurthi G (2015) Multi-modal brain tumor segmentation using stacked denoising autoencoders. In BrainLes 2015 2015 Oct 5 (pp. 181-194). Springer, Cham

    Google Scholar 

  145. Wadhwa A, Bhardwaj A, Verma VS (2019) A review on brain tumor segmentation of MRI images. Magn Reson Imaging 61:247–259

    Article  Google Scholar 

  146. Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science, vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_16

  147. Wang G, Li W, Ourselin S, Vercauteren T (2019) Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science, vol 11384. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_6

  148. Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S, Vercauteren T (2018) Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 37(7):1562–1573

    Article  Google Scholar 

  149. Wang Y, Zhang Y, Hou F, Liu Y, Tian J, Zhong C, Zhang Y, He Z (2021) Modality-pairing learning for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science, vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_21

  150. Wang S, Singh V, Benjamin A, Asiedu M, Kalafi EY, Cheah E, Kumar V, Samir, A (2021) Network-agnostic knowledge transfer for medical image segmentation. ArXiv, abs/2101.09560

  151. Wei J, Wang H, Yi Y, Li Q, Huang D (2019) P3D-CTN: Pseudo-3D convolutional tube network for spatio-temporal action detection in videos. In: 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, pp 300–304. https://doi.org/10.1109/ICIP.2019.8802979

  152. Wong KP Medical image segmentation: methods and applications in functional imaging. InHandbook of biomedical image analysis 2005 (pp. 111-182). Springer, Boston, MA

  153. Wu W, Chen AY, Zhao L, Corso JJ (2014) Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and super pixel-level features. Int J Comput Assist Radiol Surg 9(2):241–253

    Article  Google Scholar 

  154. Wu Y, Zhao Z, Wu W, Lin Y, Wang M (2019) Automatic glioma segmentation based on adaptive superpixel. BMC Med Imaging 19:73. https://doi.org/10.1186/s12880-019-0369-6

  155. Xiang L, Chen Y, Chang W, Zhan Y, Lin W, Wang Q, Shen D (2018) Deep-learning-based multi-modal fusion for fast MR reconstruction. IEEE Trans Biomed Eng 66(7):2105–2114

    Article  Google Scholar 

  156. Xu F,Ma H, Sun J,Wu R, Liu X, Kong Y (2019) LSTM multi-modal UNet for brain tumor segmentation. In; 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), pp 236–240

  157. Xu TB, Yang P, Zhang XY, Liu CL (2019) LightweightNet: toward fast and lightweight convolutional neural networks via architecture distillation. Pattern Recogn 88:272–284

    Article  Google Scholar 

  158. Xu J, Li M, Zhu Z (2020) Automatic data augmentation for 3D medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_37

  159. Xue Y, Xu T, Zhang H, Long LR, Huang X (2018) SegAN: adversarial network with multi-scale L1 loss for medical image segmentation. Neuroinform 16::383–392. https://doi.org/10.1007/s12021-018-9377-x

  160. Ytre-Hauge S, Husby JA, Magnussen IJ, Werner HM, Salvesen ØO, Bjørge L, Trovik J, Stefansson IM, Salvesen HB, Haldorsen IS (2015) Preoperative tumor size at MRI predicts deep myometrial invasion, lymph node metastases, and patient outcome in endometrial carcinomas. Int J Gynecol Cancer 1(3):25

    Google Scholar 

  161. Yuan Y (2021). Automatic brain tumor segmentation with scale attention network. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science, vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_26

  162. Žalik KR (2008 Jul 1) An efficient k′-means clustering algorithm. Pattern Recogn Lett 29(9):1385–1391

  163. Zeineldin RA, KararME,Mathis-Ullrich F, Burgert O (2022) Ensemble CNN networks for GBM tumors segmentation using multi-parametric MRI. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I. Springer International Publishing,Cham, pp 473–483

  164. Zhang J, Jiang Z, Dong J, Hou Y, Liu B (2020) Attention gate resU-net for automatic MRI brain tumor segmentation. IEEE Access 8:58533–58545

    Article  Google Scholar 

  165. Zhang D, Huang G, Zhang Q, Han J, Han J, Wang Y, Yu Y (2020) Exploring task structure for brain tumor segmentation from multi-modality MR images. IEEE Trans Image Process 29:9032–9043

    Article  MATH  Google Scholar 

  166. Zhang D, Huang G, Zhang Q, Han J, Han J, Yu Y (2021) Cross-modality deep feature learning for brain tumor segmentation. Pattern Recogn 110:107562. https://doi.org/10.1016/j.patcog.2020.107562

  167. Zhang H, Goodfellow I, Metaxas D, Odena A (2019) Self-attention generative adversarial networks. In: Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Research, vol 97, pp 7354–7363. Available from https://proceedings.mlr.press/v97/zhang19d.html

  168. Zhang L, Zhao Y, Meng D, Cui Z, Gao C, Gao X, Lian C (2021) TSGCNet: discriminative geometric feature learning with two-stream graph convolutional network for 3D dental model segmentation, pp 6695–6704. https://doi.org/10.1109/CVPR46437.2021.00663

  169. Zhao L, Jia K (2016) Multiscale CNNs for brain tumor segmentation and diagnosis. Computation Math Methods Med 2016:7. https://doi.org/10.1155/2016/8356294

  170. Zhao X, Wu Y, Song G, Li Z, Fan Y, Zhang Y (2016) Brain tumor segmentation using a fully convolutional neural network with conditional random fields. In: Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016. Lecture Notes in Computer Science, vol 10154. Springer, Cham. https://doi.org/10.1007/978-3-319-55524-9_8

  171. Zhao N, Wei Q, Basarab A, Dobigeon N, Kouamé D, Tourneret JY (2016) Fast single image super-resolution using a new analytical solution for l2-l2 problems. IEEE Trans Image Process 25(8):3683–3697

    Article  MathSciNet  MATH  Google Scholar 

  172. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 43:98–111

    Article  Google Scholar 

  173. Zhao YX, Zhang YM, Liu CL (2019) Bag of tricks for 3D MRI brain tumor segmentation. In international MICCAI Brainlesion workshop 2019 Oct 17 (pp. 210-220). Springer, Cham

    Google Scholar 

  174. Zhou C, Chen S, Ding C, Tao D (2018) Learning contextual and attentive information for brain tumor segmentation. In international MICCAI brainlesion workshop 2018 Sep 16 (pp. 497-507). Springer, Cham

    Google Scholar 

  175. Zhou T, Ruan S, Canu S (2019) A review: deep learning for medical image segmentation using multi-modality fusion. Array 3–4:100004. https://doi.org/10.1016/j.array.2019.100004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunayana G. Domadia.

Ethics declarations

Consent for publication

Since our survey use historic data, Patients were not asked for written consent.

Conflict of interest

There is no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domadia, S.G., Thakkar, F.N. & Ardeshana, M.A. Recent advancement in learning methodology for segmenting brain tumor from magnetic resonance imaging -a review. Multimed Tools Appl 82, 34809–34845 (2023). https://doi.org/10.1007/s11042-023-14857-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14857-5

Keywords

Navigation