Skip to main content

Advertisement

Log in

Quaternion discrete orthogonal Hahn moments convolutional neural network for color image classification and face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Color image recognition has recently attracted more researchers’ attention. Many methods based on quaternions have been developed to improve the classification accuracies. Some approaches have currently used quaternions with convolutional neural network (CNN). Despite the obtained results, these approaches have some weakness such as the computational complexity. In fact, the large size of the input color images necessitates a high number of layers and parameters during the learning process which can generate errors calculation and hence influence the recognition rate. In this paper, a new architecture called quaternion discrete orthogonal Hahn moments convolutional neural network (QHMCNN) for color image classification and face recognition is proposed to reduce the computational complexity of CNN while improving the classification rate. The quaternion Hahn moments are used to extract pertinent and compact features from images and introduced them in quaternion convolutional neural network. Experimental simulations conducted on various databases are demonstrated the performance of the proposed architecture QHMCNN against other relevant methods in state-of-the-art and the robustness under different noise conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data analyzed in this study were a re-analysis of existing data, which are openly available at locations cited in the references section at [14, 28, 35, 46] and [8].

References

  1. Bharati P, Pramanik A (2020) Deep learning techniques—R-CNN to mask R-CNN: A survey. In: Computational intelligence in pattern recognition. https://doi.org/10.1007/978-981-13-9042-5_56. Springer, Singapore, pp 999:657–668

  2. Brandoni D, Simoncini V (2020) Tensor-train decomposition for image recognition. Calcolo 57(1):9. https://doi.org/10.1007/s10092-020-0358-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao Z, Hidalgo G, Simon T, Wei S E, Sheikh Y (2019) Openpose:realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE Trans Pattern Anal Mach Intell 43(1):172–186

    Article  Google Scholar 

  4. Chen BJ, Shu HZ, Zhang H, Chen G, Toumoulin C, Dillenseger JL, Luo LM (2012) Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Process 92(2): 308–318. https://doi.org/10.1016/j.sigpro.2011.07.018

    Article  Google Scholar 

  5. Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (elus). In: Published as a conference paper at ICLR, 2016. https://arxiv.org/abs/1511.07289

  6. Dad N, En-Nahnahi N, Ouatik SEA (2018) Parameter-free quaternary orthogonal moments for color image retrieval and recognition. J Electr Imaging 27 (1):011007. https://doi.org/10.1117/1.JEI.27.1.011007

    Article  Google Scholar 

  7. Dad N, En-Nahnahi N, Ouatik SEA (2019) Quaternion Harmonic moments and extreme learning machine for color object recognition. Multimed Tools Appl 78(15):20935–20959. https://doi.org/10.1007/s11042-019-7381-2

    Article  Google Scholar 

  8. De Oliveira Junior LL, Thomaz CE (2006) Captura e alinhamento de imagens: Um banco de faces brasileiro. Department of Electrical Engineering, FEI. https://fei.edu.br/~cet/facedatabase.html

  9. El Alami A, Berrahou N, Lakhili Z, Mesbah A, Berrahou A, Qjidaa H (2022) Efficient color face recognition based on quaternion discrete orthogonal moments neural networks. Multimed Tools Appl 81(2):7685–7710. https://doi.org/10.1007/s11042-021-11669-3

    Article  Google Scholar 

  10. El Alami A, Lakhili Z, Mesbah A, Berrahou A, Qjidaa H (2019) Color face recognition by using quaternion and deep neural networks. In: 2019 International conference on wireless technologies, embedded and intelligent systems (WITS), IEEE, pp 1–5. https://doi.org/10.1109/WITS.2019.8723788

  11. Elazary L, Itti L (2010) A Bayesian model for efficient visual search and recognition. Vis Res 50(14):1338–1352

    Article  Google Scholar 

  12. Frossard P, Khasanova R (2017) Graph-based classification of omnidirectional images. In: 2017 IEEE international conference on computer vision workshops (ICCVW), pp 860–869. https://doi.org/10.1109/ICCVW.2017.106

  13. Gaudet CJ, Maida AS (2018) Deep quaternion networks. In: 2018 International joint conference on neural networks (IJCNN), pp 1–8. https://doi.org/10.1109/IJCNN.2018.8489651

  14. Geusebroek JM, Burghouts GJ, Smeulders AW (2005) The Amsterdam library of object images. Int J Comput Vis 61(1):103–112. https://doi.org/10.1023/B:VISI.0000042993.50813.60

    Article  Google Scholar 

  15. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 315–323. JMLR Workshop and Conference Proceedings. http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf

  16. Graham B (2014) Fractional max-pooling. arXiv:1412.6071. https://doi.org/10.48550/arXiv.1412.6071

  17. Guo L, Dai M, Zhu M (2014) Quaternion moment and its invariants for color object classification. Inf Sci 273:132–143. https://doi.org/10.1016/j.ins.2014.03.037

    Article  MathSciNet  Google Scholar 

  18. Guo G, Zhang N (2019) A survey on deep learning based face recognition. Comput Vis Image Underst 189:102805. https://doi.org/10.1016/j.cviu.2019.102805

    Article  Google Scholar 

  19. Hamilton WR (1866) Elements of quaternions. Green & Company, Longmans

    Google Scholar 

  20. Hayat M, Bennamoun M, An S (2014) Deep reconstruction models for image set classification. IEEE Trans Pattern Anal Mach Intell 37(4):713–727. https://doi.org/10.1109/TPAMI.2014.2353635

    Article  Google Scholar 

  21. Hosny KM, Abd Elaziz M, Darwish MM (2020) Color face recognition using novel fractional-order multi-channel exponent moments. Neural Computing Appl 33(11):5419–5435. https://doi.org/10.1007/s00521-020-05280-0

    Article  Google Scholar 

  22. Hosny KM, Darwish MM (2018) New set of quaternion moments for color images representation and recognition. J Math Imaging Vis 60(5):717–736. https://doi.org/10.1007/s10851-018-0786-0

    Article  MathSciNet  MATH  Google Scholar 

  23. Hosny KM, Darwish MM, Salah A, Li K, Abdelatif AM (2021) CUDAQUat: new parallel framework for fast computation of quaternion moments for color images applications. Clust Comput 24:2385–2406. https://doi.org/10.1007/s10586-021-03271-x

    Article  Google Scholar 

  24. Lakhili Z, El Alami A, Mesbah A, Berrahou A, Qjidaa H (2019) Deformable 3D shape classification using 3D racah moments and deep neural networks. Proc Comput Sci 148:12–20. https://doi.org/10.1016/j.procs.2019.01.002

    Article  Google Scholar 

  25. Lakhili Z, El Alami A, Mesbah A, Berrahou A, Qjidaa H (2019) 3D shape classification using 3D discrete moments and deep neural networks. In: Proceedings of the 2nd international conference on networking, information systems & security, pp 1–6. https://doi.org/10.1145/3320326.3320398

  26. Lakhili Z, El Alami A, Mesbah A, Berrahou A, Qjidaa H (2020) Robust classification of 3D objects using discrete orthogonal moments and deep neural networks. Multimed Tools Appl 79(27):18883–18907. https://doi.org/10.1007/s11042-020-08654-7

    Article  Google Scholar 

  27. Lakhili Z, El Alami A, Qjidaa H (2020) Enhancing the performance of grayscale image classification by 2D Charlier moments neural networks. In: International conference on electronic engineering and renewable energy. https://doi.org/10.1007/978-981-15-6259-4_14. Springer, Singapore, pp 151–159

  28. Leibe B, Schiele B (2003) Analyzing appearance and contour based methods for object categorization. In: 2003 IEEE computer society conference on computer vision and pattern recognition, 2003 Proceedings 2003, pp II-409. https://doi.org/10.1109/CVPR.2003.1211497

  29. Li J, Yu C, Gupta BB, Ren X (2018) Color image watermarking scheme based on quaternion Hadamard transform and Schur decomposition. Multimed Tools Appl 77(4):4545–4561. https://doi.org/10.1007/s11042-017-4452-0

    Article  Google Scholar 

  30. Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, et al. (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  31. Mesbah A, Berrahou A, El Alami A, Berrahou N, Berbia H, Qjidaa H (2019) 3D object classification using 3D racah moments convolutional neural networks. In: Proceedings of the 2nd international conference on networking, information systems & security, pp 1–6. https://doi.org/10.1145/3320326.3320397

  32. Mesbah A, Berrahou A, Hammouchi H, Berbia H, Qjidaa H, Daoudi M (2019) Lip reading with Hahn convolutional neural networks. Image Vis Comput 88:76–83. https://doi.org/10.1016/j.imavis.2019.04.010

    Article  Google Scholar 

  33. Mohan BC, Chaitanya TK, Tirupal T (2019) Fast and accurate content based image classification and retrieval using Gaussian hermite moments applied to COIL 20 and COIL 100. In: 2019 10th international conference on computing, communication and networking technologies (ICCCNT), pp 1–5. https://doi.org/10.1109/ICCCNT45670.2019.8944775

  34. Muqeet MA, Holambe RS (2019) Local binary patterns based on directional wavelet transform for expression and pose-invariant face recognition. Appl Comput Inf 15(2):163–171. https://doi.org/10.1016/j.aci.2017.11.002

    Article  Google Scholar 

  35. Nene S, Nayar S, Murase H (1996) Columbia object image library (COIL-100). Columbia University, Technical report

    Google Scholar 

  36. Nitta T (1995) A quaternary version of the back-propagation algorithm. In: Proceedings of IEEE international conference on neural networks, vol. 5, pp 2753–2756

  37. Parcollet T, Zhang Y, Morchid M, Trabelsi C, Linarès G, De Mori R, Bengio Y (2018) Quaternion convolutional neural networks for end-to-end automatic speech recognition. arXiv:1806.07789

  38. Rassem TH, Makbol NM, Yee SY (2017) Face recognition using completed local ternary pattern (CLTP) texture descriptor. Int J Electr Comput Eng 7(3):1594. https://doi.org/10.11591/ijece.v7i3.pp1594-1601

    Article  Google Scholar 

  39. Reverdy P, Leonard NE (2015) Parameter estimation in softmax decision-making models with linear objective functions. IEEE Trans Autom Sci Eng 13 (1):54–67

    Article  Google Scholar 

  40. Sangwine SJ (1996) Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electr Lett 32(21):1979–1980

    Article  Google Scholar 

  41. Shah SA, Nadeem U, Bennamoun M, Sohel F, Togneri R (2017) Efficient image set classification using linear regression based image reconstruction. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 99–108

  42. Shao Z, Shu H, Wu J, Chen B, Coatrieux JL (2014) Quaternion Bessel–Fourier moments and their invariant descriptors for object reconstruction and recognition. Pattern Recogn 47(2):603–611. https://doi.org/10.1016/j.patcog.2013.08.016

    Article  MATH  Google Scholar 

  43. Shelhamer E, Long J, Darrell T (2016) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39 (4):640–651. https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  44. Singh C, Singh J (2018) Quaternion generalized Chebyshev-Fourier and pseudo-Jacobi-Fourier moments. Opt Laser Technol. 106:234–250. https://doi.org/10.1016/j.optlastec.2018.03.033

    Article  Google Scholar 

  45. Soniya PS, Singh L (2020) Application and need-based architecture design of deep neural networks. Int J Pattern Recog Artif Intell 34(13):2052014. https://doi.org/10.1142/S021800142052014X

    Article  Google Scholar 

  46. Spacek L (2008) Description of the collection of facial images. https://cmp.felk.cvut.cz/~spacelib/faces/

  47. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  48. Wang X, Li W, Yang H, Wang P, Li Y (2015) Quaternion polar complex exponential transform for invariant color image description. Appl Math Comput 256:951–967. https://doi.org/10.1016/j.amc.2015.01.075

    Article  MathSciNet  MATH  Google Scholar 

  49. Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227. https://doi.org/10.1109/TPAMI.2008.79

    Article  Google Scholar 

  50. Xia Z, Wang X, Zhou W, Li R, Wang C, Zhang C (2019) Color medical image lossless watermarking using chaotic system and accurate quaternion polar harmonic transforms. Signal Process 157:108–118. https://doi.org/10.1016/j.sigpro.2018.11.011

    Article  Google Scholar 

  51. Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv:1505.00853

  52. Xu D, Zhang L, Zhang H (2017) Learning algorithms in quaternion neural networks using GHR calculus. Neural Netw W 27(3):271–282. https://doi.org/10.14311/nnw.2017.27.014

    Article  Google Scholar 

  53. Yang HY, Liang LL, Li YW, Wang XY (2016) Quaternion exponent moments and their invariants for color image. Fundam Inf 145(2):189–205. https://doi.org/10.3233/FI-2016-1354

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang C, Yu Q (2021) Invariant multiscale triangle feature for shape recognition. Appl Math Comput 403:126096. https://doi.org/10.1016/j.amc.2021.126096

    Article  MATH  Google Scholar 

  55. Yap PT, Paramesran R, Ong SH (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377. https://doi.org/10.1109/TIP.2003.818019

    Article  MathSciNet  Google Scholar 

  56. Yap PT, Paramesran R, Ong SH (2007) Image analysis using Hahn moments. IEEE Trans Pattern Anal Mach Intell 29(11):2057–2062. https://doi.org/10.1109/TPAMI.2007.70709

    Article  Google Scholar 

  57. Zhang H, Zhang Z, Zhao M, Ye Q, Zhang M, Wang M (2020) Robust triple-matrix-recovery-based auto-weighted label propagation for classification. IEEE Trans Neural Netw Learn Syst 31(11):4538–4552

    Article  MathSciNet  Google Scholar 

  58. Zhu H, Li Q, Liu Q (2014) Quaternion discrete Tchebichef moments and their applications. International Journal of Signal Processing. Image Process Pattern Recog 7(6):149–162. https://doi.org/10.14257/ijsip.2014.7.6.13

    Article  Google Scholar 

  59. Zhu X, Xu Y, Xu H, Chen C (2018) Quaternion convolutional neural networks. In: Proceedings of the European conference on computer vision (ECCV), pp 631–647. https://arxiv.org/abs/1903.00658

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmajid El Alami.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Alami, A., Mesbah, A., Berrahou, N. et al. Quaternion discrete orthogonal Hahn moments convolutional neural network for color image classification and face recognition. Multimed Tools Appl 82, 32827–32853 (2023). https://doi.org/10.1007/s11042-023-14866-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14866-4

Keywords

Navigation