Skip to main content
Log in

Reversible data hiding with high visual quality using pairwise PVO and PEE

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Pixel-value ordering (PVO) and prediction-error expansion (PEE) are the two most popular strategies of reversible data hiding (RDH) as PVO provides high-fidelity stego-images with decent embedding capacity (EC) and PEE provides high EC with limited distortion. Further, pairwise embedding scheme introduced by Ou et al. again boosts the EC and reduces distortion of both the strategies. However, there has been a dearth of RDH schemes which can optimally utilize both the pairwise PVO and pairwise PEE strategies to provide a least trade-off between EC and visual quality. In this paper, we propound an adaptive RDH (ARDH) scheme which optimally selects the embedding strategy based on image block category. The proposed scheme reads the image in the block-wise manner using a sliding window of 4 × 4 size to get the image block of same size, then divides the block into inner and outer sub-block. The outer sub-block is considered as a reference block for the inner sub-block to determine statistical properties of the inner sub-block using standard deviation. An enhanced pairwise PEE is adopted for embedding when the standard deviation of outer sub-block’s pixels is smaller than a first user-defined threshold. In case the standard deviation is greater than the first threshold but lower than a second user-defined threshold, then pairwise PVO is adopted. Otherwise, the sub-block is skipped without embedding the secret data. As a result, the ARDH scheme utilizes both the PEE and PVO strategies in optimum manner, which in turn provides higher EC and image quality than the most of the existing RDH schemes as validated by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm:
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Supporting data and information can be found on the corresponding author’s research gate profile.

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Proc 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Dragoi I-C, Coltuc D (2016) Adaptive pairing reversible watermarking. IEEE Trans Image Proc 25(5):2420–2422

    Article  MathSciNet  MATH  Google Scholar 

  3. Dragoi IC, Coltuc D, Caciula I (2015) Horizontal pairwise reversible watermarking. Signal Processing Conference (EUSIPCO) 2015 23rd European. pp. 56–60

  4. Dragoi IC, Coltuc D, Coanda HG (2017) Adaptive pairwise reversible watermarking with horizontal grouping. Signals Circuits and Systems (ISSCS) 2017 International Symposium on. pp. 1–4

  5. Fridrich J, Goljan M, Du R (2002, 2002) Lossless Data Embedding—New Paradigm in Digital Watermarking, EURASIP J. Adv Signal Proc (2). https://doi.org/10.1155/S1110865702000537

  6. Gadamsetty S, Rupa CH, Anusha CH, Iwendi C, Gadekallu TR (2022) Hash-based deep learning approach for remote sensing satellite imagery detection. Water 14(5):707

    Article  Google Scholar 

  7. He W, Cai Z (2021) Reversible data hiding based on dual pairwise prediction-error expansion. IEEE Trans Image Proc 30:5045–5055

    Article  Google Scholar 

  8. He W, Xiong G, Weng S, Cai Z, Wang Y (2018) Reversible data hiding using multi-pass pixel-value-ordering and pairwise prediction-error expansion. Inf Sci 467:784–799

    Article  Google Scholar 

  9. He W, Xiong G, Wang (2022) Reversible data hiding based on multiple pairwise PEE and two-layer embedding. Sec Commun Netw. https://doi.org/10.1155/2022/2051058

  10. Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  11. Hou J, Ou B, Tian H, Qin Z (2021) Reversible data hiding based on multiple histograms modification and deep neural networks. Signal Process Image Commun 92:116118

    Article  Google Scholar 

  12. Hui S, Jingning H, Yaowu X (2014) An optimized template matching approach to intra coding in video/image compression. Proceedings of SPIE - The International Society for Optical Engineering. 9029. https://doi.org/10.1117/12.2040890.

  13. Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Proc 14:2082–2090

    Article  MathSciNet  Google Scholar 

  14. Kaur G, Singh S, Rani R, Kumar R (2020) A comprehensive study of reversible data hiding (RDH) schemes based on pixel value ordering (PVO). Arch Computat Methods Eng

  15. Kaur G, Singh S, Rani R, Kumar R, Malik A, (2021) High-quality reversible data hiding scheme using sorting and enhanced pairwise PEE. IET image processing. 1–15

  16. Kumar R, Chand S (2016) A reversible high capacity data hiding scheme using pixel value adjusting feature. Multimed Tools Appl 75(1):241–259

    Article  MathSciNet  Google Scholar 

  17. Kumar R, Chand S (2018) A reversible data hiding scheme using pixel location. Int Arab J Inf Technol 15(4):763–768

    Google Scholar 

  18. Kumar R, Jung K-H (2020) Enhanced pairwise I-PVO-based reversible data hiding scheme using rhombus context. Inf Sci 536:101–119. https://doi.org/10.1016/j.ins.2020.05.047

    Article  MATH  Google Scholar 

  19. Kumar R, Kim DS, Lim SH, Jung KH (2019) High-Fidelity reversible data hiding using block extension strategy. In: 2019 34th international technical conference on circuits/systems, computers and communications (ITC-CSCC). IEEE, JeJu, Korea (South), pp 1–4

    Google Scholar 

  20. Kumar R, Kumar N, Jung K-H (2020) Color image steganography scheme using gray invariant in AMBTC compression domain. Multimedia System Sign Process 31, 1145, 1162.

  21. Kumar R, Kumar N, Jung K-H (2020) I-PVO based High Capacity Reversible Data Hiding using Bin Reservation Strategy. Multimedia Tools App, Springer 79:22635–22651

    Article  Google Scholar 

  22. Kumar N, Kumar R, Caldelli R (2021) Local moment driven PVO based reversible data hiding. IEEE Signal Proc Lett 28:1335–1339

    Article  Google Scholar 

  23. Lee C-F, Shen J-J, Wu Y-J, Agrawal S (2020) PVO-based reversible data hiding exploiting two-layer embedding for enhancing image Fidelity. Symmetry 12:1164

    Article  Google Scholar 

  24. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Proc 20(12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  25. Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting based reversible data hiding. IEEE Trans Image Proc 22(6):2181–2191

    Article  MathSciNet  MATH  Google Scholar 

  26. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value ordering and prediction-error expansion. Signal Process 93(1):198–205

    Article  Google Scholar 

  27. Malik A, Singh S, Kumar R (2018) Recovery based high capacity reversible data hiding scheme using even-odd embedding. Multimed Tools Appl 77(12):15803–15827

    Article  Google Scholar 

  28. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Transact Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  29. Ou B, Li X, Zhao Y, Ni R, Shi Y-Q (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Proc 22(12):5010–5021

    Article  MathSciNet  MATH  Google Scholar 

  30. Ou B, Li X, Zhang W, Zhao Y (2019) Improving pairwise PEE via hybrid-dimensional histogram generation and adaptive mapping selection. IEEE Trans Circuits Syst Video Technol 29(7):2176–2190. https://doi.org/10.1109/TCSVT.7610.1109/TCSVT.2018.2859792

    Article  Google Scholar 

  31. Peng F, Li X, Yang B (2014) Improved PVO-based reversible data hiding. Dig Signal Proc 25:255–265

    Article  Google Scholar 

  32. Qu X, Kim HJ (2015) Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process 111:249–260

    Article  Google Scholar 

  33. Reddy Gadekallu T, Srivastava G, Liyanage M, et. al. Hand gesture recognition based on a Harris hawks optimized convolution neural network. Computers & Electrical Engineering, vol. 100, Article ID 107836

  34. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Transac Circuits Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  35. Tan TK, Boon CS, Suzuki Y (2006) Intra Prediction by Template Matching. International conference on image processing, Atlanta, GA, 2006, pp. 1693–1696 https://doi.org/10.1109/ICIP.2006.312685

  36. The USC-SIPI Image Database (n.d.) [Online]. Available: http://sipi.usc.edu/database

  37. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Proc 16(3):721–730

    Article  MathSciNet  Google Scholar 

  38. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Transac Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  39. Weng S, Zhao Y, Pan JS, Ni R (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Proc Lett 15(1):721–724

    Article  Google Scholar 

  40. Weng S, Liu Y, Pan JS, Cai N (2016) Reversible data hiding based on flexible block-partition and adaptive block-modification strategy. J Vis Commun Image Represent 41:185–199

    Article  Google Scholar 

  41. Weng SW, Tan WL, Ou B, Pan JS (2021) Reversible data hiding method for multi-histogram point selection based on improved crisscross optimization algorithm. Inf Sci 549:13–33

    Article  MathSciNet  Google Scholar 

  42. Wu H-T, Huang J (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009

    Article  Google Scholar 

  43. Wu H, Li X, Zhao Y, Ni R (2019) Improved reversible data hiding based on PVO and adaptive pairwise embedding. J Real-Time Image Proc 16(3):685–695

    Article  Google Scholar 

  44. Zhang T, Li X, Qi W, Guo Z (2020) Location-based PVO and adaptive pairwise modification for efficient reversible data hiding. IEEE Transac Inform Forensics Sec 15:2306–2319. https://doi.org/10.1109/TIFS.2019.2963766

    Article  Google Scholar 

  45. Zhao WQ, Yang BL, Gong SZ (2018) A higher efficient reversible data hiding scheme based on pixel value ordering. J Inf Hiding Multimed Signal Process 9:918–928

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3049788) and Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (2019H1D3A1A01101687, 2021H1D3A2A01099390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Kumar, R., Malik, A. et al. Reversible data hiding with high visual quality using pairwise PVO and PEE. Multimed Tools Appl 82, 30733–30758 (2023). https://doi.org/10.1007/s11042-023-14867-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14867-3

Keywords

Navigation