Skip to main content
Log in

Image thresholding through nonextensive entropies and long-range correlation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, many image thresholding techniques have emerged involving entropy measures with the related long-range and short-range correlation properties. However, despite the segmentation capabilities demonstrated by those methods, we have noticed limitations in dealing with images with local long-range correlation in the foreground and background. In order to address this issue, in this paper, we propose a combination of two approaches, the first one that applies the Tsallis and Shannon entropies while the second one uses the Masi entropy as the information measure. Such a combination leads to a thresholding criterion based on Tsallis and Masi entropies, providing an improved long-range correlation image thresholding method. Besides, differently from the others, the novel technique works with two entropic parameters instead of just one, which improves the technique’s capabilities to fit the specific requirements of the applications. In the computational experiments, the quantitative evaluation of the segmentation is performed using infrared, Non-Destructive Testing images, the public Berkeley Segmentation Dataset (BSDS500), together with four error metrics computed through the ground-truth segmentation and the obtained results. The proposed method outperforms the competing approaches for infrared and non-destructive images. In the case of BSDS500, we get the second best results. For benchmark images without ground-truth segmentation, the visual analysis shows that the proposal is competitive concerning counterpart techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. Interestingly, the values of the entropic parameter r used for processing infrared images were not reported by the authors of [57].

References

  1. Abdollahi B, Tomita N, Hassanpour S (2020) Data augmentation in training deep learning models for medical image analysis, pp 167–180. Springer international publishing, Cham. https://doi.org/10.1007/978-3-030-42750-4_6

  2. Aczél J, Daóczy Z (1975) On measures of information and their characterizations. In: Mathematics in science and engineering, vol 115. Elsevier. https://doi.org/10.1016/S0076-5392(08)62737-X. https://www.sciencedirect.com/science/article/pii/S007653920862737X

  3. Albuquerque MP, Esquef IA, Gesualdi Mello AR, Albuquerque MP (2004) Image thresholding using tsallis entropy. Pattern Recogn Lett 25:1059–1065

    Article  Google Scholar 

  4. Alcantara RS, Ferreira Jr PE, Ramos AS (2016) Tsallis entropy extraction for mamographic region classification. In: Beltrán-Castañón C, Nyström I, Famili F (eds) Progress in pattern recognition, image analysis, computer vision, and applications. CIARP 2016. Lecture notes in computer science. Springer, Cham, vol 10125, pp 451–458

  5. Babu A, Rajam V (2020) Water-body segmentation from satellite images using kapur’s entropy-based thresholding method. Comput Intell 36:1242–1260

    Article  MathSciNet  Google Scholar 

  6. Borjigin S, Sahoo P (2019) Color image segmentation based on multi-level tsallis-havrda-charvát entropy and 2d histogram using pso algorithms. Pattern Recognit. 92:107–118

    Article  Google Scholar 

  7. Brink AD (1992) Thresholding of digital images using two-dimensional entropies. Pattern Recogn 25:803–808

    Article  Google Scholar 

  8. Cáceres MO (1999) Non-Markovian processes with long-range correlations: fractal dimension analysis. Brazilian J Phys 29:125–135

    Article  Google Scholar 

  9. Cheng SC, Tsai WH (1993) A neural network implementation of the moment-preserving technique and its application to thresholding. IEEE Trans Comput 42(4):501–507. https://doi.org/10.1109/12.214696

    Article  Google Scholar 

  10. Cowger W, Gray A, Christiansen S, DeFrond H, Deshpande A, Hemabessiere L, Lee E, Mill L, Munno K, Oßmann BE, Pittroff M, Rochman C, Sarau G, Tarby S, Primpke S (2020) Critical review of processing and classification techniques for images and spectra in microplastic research. Appl Spectroscopy 74:1010–989

    Article  Google Scholar 

  11. Deng Q, Shi Z, Ou C (2022) Self-adaptive image thresholding within nonextensive entropy and the variance of the gray-level distribution. Entropy, vol 24

  12. Dhal KG, Das A, Ray S, Gálvez J, Das S (2020) Nature-inspired optimization algorithms and their application in multi-thresholding image segmentation. Arch Computat Methods Eng 27:855–888

    Article  MathSciNet  Google Scholar 

  13. Díaz-Cortés MA, Ortega-Sánchez N, Hinojosa S, Oliva D, Cuevas E, Rojas R, Demin A (2018) A multi-level thresholding method for breast thermograms analysis using dragonfly algorithm. Infrared Phys Technol 93:346–361

    Article  Google Scholar 

  14. Elaraby A, Moratal D (2017) A generalized entropy-based two-phase threshold algorithm for noisy medical image edge detection. Scientia Iranica 24 (6):3247–3256. https://doi.org/10.24200/sci.2017.4359. http://scientiairanica.sharif.edu/article_4359.html

    Google Scholar 

  15. Fabbri R, Gonçalves WN, Lopes FJP, Bruno OM (2012) Multi-q pattern analysis: a case study in image classification. Physica A - Stat Mech Appl 19:4487–4496

    Article  Google Scholar 

  16. Farshi TR, Ardabili AK (2021) A hybrid firefly and particle swarm optimization algorithm applied to multilevel image thresholding. Multimed Syst 27:125–142

    Article  Google Scholar 

  17. Feng Y, Zhao H, fei Li X, Zhang X, Li H (2017) A multi-scale 3d otsu thresholding algorithm for medical image segmentation. Digit Signal Process 60:186–199

    Article  Google Scholar 

  18. Garcia-Garcia A, Orts S, Oprea S, Villena-Martinez V, Martinez-Gonzalez P, Rodríguez JG (2018) A survey on deep learning techniques for image and video semantic segmentation. Appl Soft Comput 70:41–65

    Article  Google Scholar 

  19. Grady L, Schwartz E (2006) Isoperimetric graph partitioning for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(3):469–475. https://doi.org/10.1109/TPAMI.2006.57

    Article  Google Scholar 

  20. He Y, Yu H, Liu XY, Yang Z, Sun W, Wang Y, Fu Q, Zou Y, Mian AS (2021) Deep learning based 3d segmentation: a survey. arXiv:2103.05423

  21. Hertz L, Schafer RW (1988) Multilevel thresholding using edge matching. Comput Vis Graph Image Process 44 (3):279–295. https://doi.org/10.1016/0734-189X(88)90125-9. https://www.sciencedirect.com/science/article/pii/0734189X88901259

    Article  Google Scholar 

  22. Hu Q, Hou Z, Nowinski WL (2006) Supervised range-constrained thresholding. IEEE Trans Image Process 15(1):228–240

    Article  Google Scholar 

  23. Hu YT, Huang JB, Schwing AG (2018) Videomatch: matching based video object segmentation. arXiv:1809.01123

  24. Ishak AB (2017) Choosing parameters for rényi and tsallis entropies within a two-dimensional multilevel image segmentation framework. Physica A 466:521–536

    Article  Google Scholar 

  25. Ishak AB (2017) A two-dimensional multilevel thresholding method for image segmentation. Appl Soft Comput 52:306–322

    Article  MathSciNet  Google Scholar 

  26. Jasim WN, Mohammed RE (2021) A survey on segmentation techniques for image processing. Iraqi J Electr Electron Eng

  27. Jawahar C, Biswas P, Ray A (1997) Investigations on fuzzy thresholding based on fuzzy clustering. Pattern Recognit 30(10):1605–1613. https://doi.org/10.1016/S0031-3203(97)00004-6. https://www.sciencedirect.com/science/article/pii/S0031320397000046

    Article  MATH  Google Scholar 

  28. Jrad MS, Oueslati AE, Lachiri Z (2016) Image segmentation based thresholding technique: application to dna sequence scalograms. In: 2016 2nd International conference on advanced technologies for signal and image processing (ATSIP), pp 319–324

  29. Jurdi RE, Petitjean C, Honeine P, Abdallah F (2020) Bb-unet: U-net with bounding box prior. IEEE J Sel Top Signal Process 14:1189–1198

    Article  Google Scholar 

  30. Kapur J, Sahoo P, Wong A (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29:273–285

    Article  Google Scholar 

  31. Khairuzzaman AK, Chaudhury S (2019) Masi entropy based multilevel thresholding for image segmentation. Multimed Tools Appl 78:33,573–33,591. https://doi.org/10.1007/s11042-019-08117-8

    Article  Google Scholar 

  32. Khashman A, Şekeroğlu B (2006) Novel thresholding method for document analysis. In: 2006 IEEE International Conference on Industrial Technology, pp 616–620

  33. Kirby RL, Rosenfeld A (1979) A note on the use of (gray level, local average gray level) space as an aid in threshold selection. IEEE Trans Syst Man Cybern 9(12):860–864. https://doi.org/10.1109/TSMC.1979.4310138

    Article  Google Scholar 

  34. Kumar D, Agrawal R, Verma H (2020) Kernel intuitionistic fuzzy entropy clustering for mri image segmentation. Soft Comput 24:4003–4026

    Article  Google Scholar 

  35. Kumar N (2017) Thresholding in salient object detection: a survey. Multimed Tools Appl 77:19,139–19,170

    Article  Google Scholar 

  36. Lang C, Jia H (2019) Kapur’s entropy for color image segmentation based on a hybrid whale optimization algorithm. Entropy, vol 21

  37. Larabi-Marie-Sainte S, Alskireen R, Alhalawani S (2021) Emerging applications of bio-inspired algorithms in image segmentation. Electronics

  38. Lateef F, Ruichek Y (2019) Survey on semantic segmentation using deep learning techniques. Neurocomputing 338:321–348

    Article  Google Scholar 

  39. Lei B, Fan J (2020) Adaptive kaniadakis entropy thresholding segmentation algorithm based on particle swarm optimization. Soft Comput 24:7305–7318

    Article  Google Scholar 

  40. Lei B, Fan J (2020) Multilevel minimum cross entropy thresholding: a comparative study. Appl Soft Comput 96:106,588. https://doi.org/10.1016/j.asoc.2020.106588. https://www.sciencedirect.com/science/article/pii/S1568494620305263

    Article  Google Scholar 

  41. Leung C, Lam F (1997) Maximum a posteriori spatial probability segmentation. IEE Proc Vis Image Signal Process 144(6):161–167

    Article  Google Scholar 

  42. Li C, Tam P (1998) An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit Lett 19:771–776

    Article  MATH  Google Scholar 

  43. Li Z, Liu C, Liu G, Yang X, Cheng Y (2011) Statistical thresholding method for infrared images. Pattern Anal Applic 14:109–126

    Article  MathSciNet  Google Scholar 

  44. Lin A, Wu L, Zheng B, Zan H (2010) Self-adaptive parameter selection in one-dimensional tsallis entropy thresholding with particle swarm optimization algorithm. In: Proceedings of 3rd international congress on image and signal processing. Yantai, China, pp 1460–1464

  45. Lin Q, Ou C (2012) Tsallis entropy and the long-range correlation in image thresholding. Signal Process 92:2931–2939

    Article  Google Scholar 

  46. Liu D, Jiang Z, Feng H (2006) A novel fuzzy classification entropy approach to image thresholding. Pattern Recogn Lett 27:1968–1975

    Article  Google Scholar 

  47. Liu Q, He Z (2019) PTB-TIR: a thermal infrared pedestrian tracking benchmark. http://www.hezhenyu.cn/PTB-TIR.html

  48. Mahmoudi L, Zaart AE (2012) A survey of entropy image thresholding techniques. In: 2012 2nd International conference on advances in computational tools for engineering applications (ACTEA), pp 204–209

  49. Manda MP, Hyun DK (2021) Double thresholding with sine entropy for thermal image segmentation. Traitement du Signal 38:1713–1718

    Article  Google Scholar 

  50. Manda MP, Kim HS (2020) A fast image thresholding algorithm for infrared images based on histogram approximation and circuit theory. Algorithms 13:207

    Article  MathSciNet  Google Scholar 

  51. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc 8th int’l conf. Computer vision, vol 2, pp 416–423

  52. Masi M (2005) A step beyond tsallis and rényi entropies. Phys Lett A 338:217–224

    Article  MathSciNet  MATH  Google Scholar 

  53. Miezianko R (2020) Ieee otcbvs ws series bench; roland miezianko, terravic researcch infrared database. http://vcipl-okstate.org/pbvs/bench/

  54. Mohanalin J, Kalra P, Kumar K (2009) Tsallis entropy based contrast enhancement of microcalcifications. In: International conference on signal acquisition and processing - ICSAP, Kuala Lumpur, pp 3–7

  55. Moreira Mello V, Ferreira Júnior PE, Giraldi GA (2022) Entropy thresholding. https://observablehq.com/@vinicius-mello/entropy-thresholding

  56. Nameirakpam D, Chanu Y (2017) A survey on image segmentation methods using clustering techniques. European J Eng Res Sci 2:15. https://doi.org/10.24018/ejers.2017.2.1.237

    Article  Google Scholar 

  57. Nie F, Zhang P, Li J, Ding D (2017) A novel generalized entropy and its application in image thresholding. Signal Process 134:23–34

    Article  Google Scholar 

  58. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. https://doi.org/10.1109/tsmc.1979.4310076. https://app.dimensions.ai/details/publication/pub.1042805607

    Article  Google Scholar 

  59. Pare S, Kumar A, Singh GK, Bajaj V (2020) Image segmentation using multilevel thresholding: a research review. Iranian J Sci Technol Trans Electr Eng 44:1–29

    Article  Google Scholar 

  60. Prasad M, Krishna PR (2013) A novel q-parameter automation in tsallis entropy for image segmentation. Int J Comput Appl 70:48–53

    Google Scholar 

  61. Pun T (1981) Entropic thresholding: a new approach. Comput Graph Image Process 16:210–239

    Article  Google Scholar 

  62. Rodrigues PS, Giraldi GA (2009) Computing q-index for tsallis nonextensive image segmentation. In: Proceedings of XXII Brazilian symposium on computer graphics and image processing - SIBGRAPI. Rio de Janeiro, Brazil, pp 232–237

  63. Rodrigues PS, Wachs-Lopes GA, Santos RM, Coltri E, Giraldi G (2019) A q-extension of sigmoid functions and the application for enhancement of ultrasound images. Entropy, vol 21

  64. Rodrigues PSS, Wachs-Lopes GA, Erdmann HR, Ribeiro MP, Giraldi GA (2015) Improving a firefly meta-heuristic for multilevel image segmentation using tsallis entropy. Pattern Anal Appl 20:1–20

    Article  MathSciNet  MATH  Google Scholar 

  65. Sahoo P, Wilkins C, Yeager J (1997) Threshold selection using renyi’s entropy. Pattern Recognit 30(1):71–84. https://doi.org/10.1016/S0031-3203(96)00065-9. https://www.sciencedirect.com/science/article/pii/S0031320396000659

    Article  MATH  Google Scholar 

  66. Sahoo PK, Wilkins C, Yeager J (1997) Thresholding selection using rényi’s entropy. Pattern Recogn 30:71–84

    Article  MATH  Google Scholar 

  67. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Eletron Imaging 13:146–165

    Article  Google Scholar 

  68. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  MathSciNet  MATH  Google Scholar 

  69. Shokri M, Tizhoosh H (2003) Using reinforcement learning for image thresholding. In: CCECE 2003 - Canadian conference on electrical and computer engineering. Toward a caring and humane technology (cat. no.03CH37436), vol 2, pp 1231–1234 vol.2. https://doi.org/10.1109/CCECE.2003.1226121

  70. Shubham S, Bhandari AK (2019) A generalized masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed Tools Appl 78:17,197–17,238. https://doi.org/10.1007/s11042-018-7034-x

    Article  Google Scholar 

  71. Sipos E, Ones A, Ivanciu LN (2022) Pcb quality check: optical inspection using color mask and thresholding. In: 2022 IEEE international conference on automation, quality and testing, robotics (AQTR), pp 1–5

  72. Sparvigna AC (2015) Tsallis entropy in bi-level and multi-level image thresholding. Int J Sci 4(01):40–49

    Google Scholar 

  73. Thilagaraj M, Rajasekaran MP, Kumar NA (2018) Tsallis entropy: as a new single feature with the least computation time for classification of epileptic seizures. Cluster Comput 22:15,213–15,221

    Article  Google Scholar 

  74. Tizhoosh HR (2005) Image thresholding using type ii fuzzy sets. Pattern Recognit 38:2363–2372

    Article  MATH  Google Scholar 

  75. Tsai WH (1985) Moment-preserving thresolding: a new approach. Comput Vis Graph Image Process 29 (3):377–393. https://doi.org/10.1016/0734-189X(85)90133-1. https://www.sciencedirect.com/science/article/pii/0734189X85901331

    Article  Google Scholar 

  76. Tsallis C (1988) Possible generalizations of boltzmann-gibbs statistics. J Stat Phys 52:480–487

    Article  MathSciNet  MATH  Google Scholar 

  77. Tsallis C (1999) Nonextensive statistics: theoretical, experimental and computational evidences and connections. Braz J Phys, vol 29

  78. Wachs-Lopes GA, Santos RM, Saito N, Rodrigues PSS (2020) Recent nature-inspired algorithms for medical image segmentation based on tsallis statistics. Commun Nonlinear Sci Numer Simul 88(105):256

    MathSciNet  MATH  Google Scholar 

  79. Whatmough R (1991) Automatic threshold selection from a histogram using the “exponential hull”. CVGIP: Graph Models Image Process 53 (6):592–600. https://doi.org/10.1016/1049-9652(91)90009-9. https://www.sciencedirect.com/science/article/pii/1049965291900099

    Google Scholar 

  80. Wunnava A, Naik MK, Panda R, Jena B, Abraham A (2020) A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Eng Appl Artif Intell, vol 94. https://doi.org/10.1016/j.engappai.2020.103836

  81. Xu Y, Chen R, Li Y, Zhang P, Yang J, Zhao X, Liu M, Wu D (2019) Multispectral image segmentation based on a fuzzy clustering algorithm combined with tsallis entropy and a gaussian mixture model. Remote Sens 11:2772

    Article  Google Scholar 

  82. Yao X, Wang X, Wang S, Zhang Y (2020) A comprehensive survey on convolutional neural network in medical image analysis. Multimed Tools Appl:1–45

  83. Yin S, Qian Y, Gong M (2017) Unsupervised hierarchical image segmentation through fuzzy entropy maximization. Pattern Recognit 68:245–259

    Article  Google Scholar 

  84. Zhang X, Feng X, Xiao P, He G, Zhu L (2015) Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS J Photogram Remote Sensing 102:73–84. https://doi.org/10.1016/j.isprsjprs.2015.01.009. https://www.sciencedirect.com/science/article/pii/S092427161500026X

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to especially thank Prof. Congjie Ou for supplying your IR and NDT images, and the ground-truth of them. In addition, for some discussions. We also thank Prof. ZuoYong Li for supplying several images and ground-truth of them.

Funding

This research was partially funded by the National Institute of Science and Technology in Medicine Assisted by Scientific Computing (INCT-MACC), Award Number CNPQ 465586/2014-7 - INCT-MACC, and Conselho Nacional de Desenvolvimento Científico e Tecnológico, Award Number 307769/2020-8, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: Perfilino Eugênio Ferreira Júnior and Vinícius Moreira Mello. Original draft preparation: Gilson Antonio Giraldi

Corresponding author

Correspondence to Gilson Antonio Giraldi.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira Júnior, P.E., Mello, V.M. & Giraldi, G.A. Image thresholding through nonextensive entropies and long-range correlation. Multimed Tools Appl 82, 43029–43073 (2023). https://doi.org/10.1007/s11042-023-14978-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14978-x

Keywords

Navigation