Skip to main content

Advertisement

Log in

Wilson’s disease classification using higher-order Gabor tensors and various classifiers on a small and imbalanced brain MRI dataset

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Wilson’s Disease (WD) is a rare, autosomal recessive disorder caused by excessive accumulation of Copper (Cu) in various human organs such as the liver, brain, and eyes. Accurate WD diagnosis is challenging because of: (1) subtle intensity variations in infected tissues, and (2) Biased training results in case of a small and imbalanced dataset. This study provides a novel WD classification model for a small MRI dataset (3072 scans). The proposed study explores multi-dimensional Gabor kernels in five scales and eight orientations to produce pixel-specific features and process them in the 4th-order tensor format. The tucker decomposition technique is applied to obtain approximate factors from the Gabor tensors set. Five-fold cross-validation results show that the proposed classification model achieves 99.91% classification accuracy which is better than four well-known feature extraction techniques: (1) 2D-Discrete Wavelet Transform, (2) Intensity histograms, (3) Histogram of oriented gradients, and (4) Grey level co-occurrence matrix. Also, our method improves the classification accuracy by an average of 33% and Area Under the Curve (AUC) by 25% over the above-mentioned feature extraction techniques. In the latter category, the performance of the proposed method is compared with three deep learning models: (1) Customized Convolution Neural Network (CCNN), (2) AlexNet, and (3) VGGNet. In addition, it enhances classification accuracy by 10%, 3.5%, and 3%, compared to CCNN, AlexNet, and VGGNet, respectively. Also, our proposed approach is computationally fast compared to discussed feature extraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abdel Ghaffar TY, Elsayed SM, Elnaghy S, Shadeed A, Elsobky ES, Schmidt H (2011) Phenotypic and genetic characterization of a cohort of pediatric Wilson disease patients. BMC Pediatr 11(1):1–11

    Article  Google Scholar 

  2. Agarwal M, Saba L, Gupta SK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Sharma AM, Viswanathan V, Kitas GD, Nicolaides A, Suri JS (2021) Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application. Med Biol Eng Comput 59(3):511–533

    Article  Google Scholar 

  3. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, ..., Asari VK (2018) The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164

  4. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, … Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8(1):1–74

    Article  Google Scholar 

  5. Awan MJ, Raza A, Yasin A, Shehzad HMF, Butt I (2021) The customized convolutional neural network of face emotion expression classification. Ann Roman Soc Cell Bio 25(6):5296–5304

    Google Scholar 

  6. Beheshti Z (2018) BMNABC: binary multi-neighborhood artificial bee colony for high-dimensional discrete optimization problems. Cybern Syst 49(7–8):452–474

    Article  Google Scholar 

  7. Brewer GJ (2003) Wilson Disease. In: NORD Guide to Rare Disorders. Philadelphia, PA: Lippincott Williams & Wilkins, 506

  8. Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA (2020) Albumentations: fast and flexible image augmentations. Information 11(2):125

    Article  Google Scholar 

  9. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K (2015) Xgboost: extreme gradient boosting. R package version 04-2 1(4):1–4

    Google Scholar 

  10. Chou CP, Peng NJ, Chang TH, Yang TL, Hu C, Lin HS, Huang JS, Pan HB (2015) Clinical roles of breast 3T MRI, FDG PET/CT, and breast ultrasound for asymptomatic women with an abnormal screening mammogram. J Chin Med Assoc 78(12):719–725

    Article  Google Scholar 

  11. Collins CJ, Yi F, Dayuha R, Duong P, Horslen S, Camarata M, Coskun AK, Houwen RHJ, Pop TL, Zoller H, Yoo HW, Jung SW, Weiss KH, Schilsky ML, Ferenci P, Hahn SH (2021) Direct measurement of ATP7B peptides is highly effective in the diagnosis of Wilson disease. Gastroenterology 160(7):2367–2382

    Article  Google Scholar 

  12. Dinapoli N, Barbaro B, Gatta R, Chiloiro G, Casà C, Masciocchi C, Damiani A, Boldrini L, Gambacorta MA, Dezio M, Mattiucci GC, Balducci M, van Soest J, Dekker A, Lambin P, Fiorino C, Sini C, de Cobelli F, di Muzio N, … Valentini V (2018) Magnetic resonance, vendor-independent, intensity histogram analysis predicting pathologic complete response after radiochemotherapy of rectal cancer. Int J Radiat Oncol Biol Phys 102(4):765–774

    Article  Google Scholar 

  13. Dusek P, Skoloudik D, Maskova J, Huelnhagen T, Bruha R, Zahorakova D, Niendorf T, Ruzicka E, Schneider SA, Wuerfel J (2018) Brain iron accumulation in Wilson’s disease: a longitudinal imaging case study during anticopper treatment using 7.0 T MRI and transcranial sonography. J Magn Reson Imaging 47(1):282–285

    Article  Google Scholar 

  14. Dusek P, Smolinski L, Redzia-Ogrodnik B, Golebiowski M, Skowronska M, Poujois A, Laurencin C, Jastrzebska-Kurkowska I, Litwin T, Członkowska A (2020) Semiquantitative scale for assessing brain MRI abnormalities in Wilson disease: a validation study. Mov Disord 35(6):994–1001

    Article  Google Scholar 

  15. Garg M, Dhiman G (2021) A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Comput & Applic 33(4):1311–1328

    Article  Google Scholar 

  16. Gu W, Xiang C, Venkatesh YV, Huang D, Lin H (2012) Facial expression recognition using radial encoding of local Gabor features and classifier synthesis. Pattern Recogn 45(1):80–91

    Article  Google Scholar 

  17. Hao Z, He L, Chen B, Yang X (2013) A linear support higher-order tensor machine for classification. IEEE Trans Image Process 22(7):2911–2920

    Article  Google Scholar 

  18. Heckemann RA, Ledig C, Gray KR, Aljabar P, Rueckert D, Hajnal JV, Hammers A (2015) Brain extraction using label propagation and group agreement: Pincram. PLoS One 10(7):e0129211

    Article  Google Scholar 

  19. Islam MM, Iqbal H, Haque MR, Hasan MK (2017) Prediction of breast cancer using support vector machine and K-nearest neighbors. In 2017 IEEE region 10 humanitarian technology conference (R10-HTC) (pp. 226-229). IEEE

  20. Jun H, Shuai L, Jinming S, Yue L, Jingwei W, Peng J (2018) Facial expression recognition based on VGGNet convolutional neural network. In: 2018 Chinese automation congress (CAC) (pp. 4146-4151). IEEE

  21. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5(3):6915

    Article  Google Scholar 

  22. Khan S, Khan A, Maqsood M, Aadil F, Ghazanfar MA (2019) Optimized gabor feature extraction for mass classification using cuckoo search for big data e-healthcare. J Grid Comput 17(2):239–254

    Article  Google Scholar 

  23. Kim YD, Choi S (2007) Nonnegative tucker decomposition. In: 2007 IEEE conference on computer vision and pattern recognition (pp. 1-8). IEEE

  24. Kisil I, Calvi GG, Dees BS, Mandic, DP (2021) HOTTBOX: Higher Order Tensor ToolBOX. arXiv preprint arXiv:2111.15662

  25. Liu Y, Shang F, Fan W, Cheng J, Cheng H (2014) Generalized higher-order orthogonal iteration for tensor decomposition and completion Advances in Neural Information Processing Systems, 27, 2563

  26. Livne M, Rieger J, Aydin OU, Taha AA, Akay EM, Kossen T, Sobesky J, Kelleher JD, Hildebrand K, Frey D, Madai VI (2019) A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci 13:97

    Article  Google Scholar 

  27. Maier A, Syben C, Lasser T, Riess C (2019) A gentle introduction to brain learning in medical image processing. Z Med Phys 29(2):86–101

    Article  Google Scholar 

  28. Mameniškienė R, Wolf P (2017) Epilepsia partialis continua: a review. Seizure 44:74–80

    Article  Google Scholar 

  29. Medici V, Czlonkowska A, Litwin T, Giulivi C (2021) Diagnosis of Wilson disease and its phenotypes by using artificial intelligence. Biomolecules 11(8):1243

    Article  Google Scholar 

  30. Mori E, Yamadori A (1989) Rejection behaviour: a human homologue of the abnormal behaviour of Denny-Brown and Chambers' monkey with bilateral parietal ablation. J Neurol Neurosurg Psychiatry 52(11):1260–1266

    Article  Google Scholar 

  31. Morsing A, Hildebrandt MG, Vilstrup MH, Wallenius SE, Gerke O, Petersen H, Johansen A, Andersen TL, Høilund-Carlsen PF (2019) Hybrid PET/MRI in major cancers: a scoping review. Eur J Nucl Med Mol Imaging 46(10):2138–2151

    Article  Google Scholar 

  32. Movellan JR (2002) Tutorial on Gabor filters. Open Source Doc 40:1–23

    Google Scholar 

  33. Nainggolan R, Perangin-angin R, Simarmata E, Tarigan AF (2019) Improved the performance of the K-means cluster using the sum of squared error (SSE) optimized by using the Elbow method. In journal of physics: conference series (Vol. 1361, no. 1, p. 012015). IOP publishing

  34. Nayak DR, Dash R, Majhi B (2016) Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177:188–197

    Article  Google Scholar 

  35. Nigam S, Singh R, Misra AK (2018) Efficient facial expression recognition using histogram of oriented gradients in wavelet domain. Multimed Tools Appl 77(21):28725–28747

    Article  Google Scholar 

  36. Ou J, Bai XB, Pei Y, Ma L, Liu W (2010) Automatic facial expression recognition using Gabor filter and expression analysis. In: 2010 second international conference on computer modeling and simulation (Vol. 2, pp. 215-218). IEEE

  37. Raghavaiah P, Varadarajan S (2021) A CAD system design to diagnosize alzheimers disease from MRI brain images using optimal deep neural network. Multimed Tools Appl 80(17):26411–26428

    Article  Google Scholar 

  38. Ranjan A, Kalita J, Kumar S, Bhoi SK, Misra UK (2015) A study of MRI changes in Wilson disease and its correlation with clinical features and outcome. Clin Neurol Neurosurg 138:31–36

    Article  Google Scholar 

  39. Saba L, Tiwari A, Biswas M, Gupta SK, Godia-Cuadrado E, Chaturvedi A, … Suri JS (2019) Wilson’s disease: a new perspective review on its genetics, diagnosis and treatment. Frontiers in Biosci-Elite 11(1):166–185

    Article  Google Scholar 

  40. Saba L, Agarwal M, Sanagala SS, Gupta SK, Sinha GR, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Viswanathan V, Kitas GD, Suri JS (2020) Brain MRI-based Wilson disease tissue classification: an optimised deep transfer learning approach. Electron Lett 56(25):1395–1398

    Article  Google Scholar 

  41. Sharma H, Kumar S (2016) A survey on decision tree algorithms of classification in data mining. Int J Sci Res (IJSR) 5(4):2094–2097

    Article  Google Scholar 

  42. Shim HJ, Kim JH, Jung JW, Yu HJ (2021) Attentive max feature map for acoustic scene classification with joint learning considering the abstraction of classes. arXiv preprint arXiv:2104.07213

  43. Shribman S, Warner TT, Dooley JS (2019) Clinical presentations of Wilson disease. Ann Trans Med 7(Suppl 2):S60

    Article  Google Scholar 

  44. Smith SM (2000) BET: brain extraction tool. FMRIB TR00SMS2b, Oxford Centre for Functional Magnetic Resonance Imaging of the brain), Department of Clinical Neurology, Oxford University, John Radcliffe Hospital, Headington, UK

  45. Speiser JL, Miller ME, Tooze J, Ip E (2019) A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst Appl 134:93–101

    Article  Google Scholar 

  46. Taeger D, Kuhnt S (2014) Statistical hypothesis testing with SAS and R. John Wiley & Sons

    Book  MATH  Google Scholar 

  47. Tao D, Li X, Wu X, Maybank SJ (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715

    Article  Google Scholar 

  48. Thurnhofer-Hemsi K, López-Rubio E, Molina-Cabello MA, Najarian K (2020) Radial basis function kernel optimization for support vector machine classifiers. arXiv preprint arXiv:2007.08233

  49. Tiwari A, Chaturvedi A (2022) A hybrid feature selection approach based on information theory and dynamic butterfly optimization algorithm for data classification. Expert Syst Appl 196:116621

    Article  Google Scholar 

  50. Trivedi VK, Shukla PK, Pandey A (2022) Automatic segmentation of plant leaves disease using min-max hue histogram and k-mean clustering. Multimed Tools Appl, 1–28, 81

  51. Unser M, Van De Ville D (2009) Wavelet steerability and the higher-order Riesz transform. IEEE Trans Image Process 19(3):636–652

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang YE, Wei GY, Brooks D (2019) Benchmarking TPU, GPU, and CPU platforms for deep learning. arXiv preprint arXiv:1907.10701

  53. Wang P, Fan E, Wang P (2021) Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recogn Lett 141:61–67

    Article  Google Scholar 

  54. Wiens TS, Dale BC, Boyce MS, Kershaw GP (2008) Three way k-fold cross-validation of resource selection functions. Ecol Model 212(3–4):244–255

    Article  Google Scholar 

  55. Wu X, He R, Sun Z, Tan T (2018) A light CNN for deep face representation with noisy labels. IEEE Trans Inform Forensics Sec 13(11):2884–2896

    Article  Google Scholar 

  56. Yang Y, Allen E, Ding J, Wang W (2007) Giant axonal neuropathy. Cell Mol Life Sci 64(5):601–609

    Article  Google Scholar 

  57. Yu G, Xu F, Cui Y, Li X, Kang C, Lu C, … Du S (2020) A new method of predicting the saturation pressure of oil reservoir and its application. Int J Hydrog Energy 45(55):30244–30253

    Article  Google Scholar 

  58. Zheng YB, Huang, T. Z., Zhao, X. L., Zhao, Q., Jiang, T. X. (2021). Fully-connected tensor network decomposition and its application to higher-order tensor completion. In: Proceedings of the AAAI conference on artificial intelligence (Vol. 35, no. 12, pp. 11071-11078).

Download references

Funding

No funding is received for the proposed research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Tiwari.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A. Wilson’s disease classification using higher-order Gabor tensors and various classifiers on a small and imbalanced brain MRI dataset. Multimed Tools Appl 82, 35121–35147 (2023). https://doi.org/10.1007/s11042-023-14979-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14979-w

Keywords

Navigation