Skip to main content
Log in

Lightweight deep learning model for automatic landslide prediction and localization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

There has been a lot of interest in utilizing remote sensing images to anticipate landslides. We propose a novel framework for automatic landslide detection and landslide region localization from the input remote sensing image. The framework consists of pre-processing, dynamic segmentation, automatic feature extraction, classification, and localization. The pre-processing is the integrated step that performs atmospheric corrections, geometric corrections, and unnecessary region removal with denoising using 2D median filtering. The pre-processed image is then segmented using the dynamic segmentation approach to extract the Region of Interest (ROI). We propose lightweight Convolutional Neural Network (CNN) layers for automatic feature extraction and scaling using the ResNet50 model. The CNN layers are designed systematically for automatic feature extraction to improve accuracy and reduce computational requirements. The Long-Term Short Memory (LSTM), Artificial Neural Network (ANN), and Support Vector Machine (SVM) classifiers are designed to perform the landslide prediction. If landslides are forecast, the post-processing stages are intended to identify potential landslide locations. The experimental results show that the proposed CNN-LSTM model outperformed the existing solutions in terms of accuracy, F1 score, precision, and recall rates. The experimental outcomes reveal that the proposed model improves the overall prediction accuracy by 2% and reduces the computational complexity by 35% compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aksoy B, Ercanoglu M (2012) Landslide identification and classification by object-based image analysis and fuzzy logic: an example from the Azdavay region (Kastamonu, Turkey). Comput Geosci 38(1):87–98. https://doi.org/10.1016/j.cageo.2011.05.010

    Article  Google Scholar 

  2. Azarafza M, Azarafza M, Akgün H, Atkinson PM, Derakhshani R (2021) Deep learning-based landslide susceptibility mapping. Sci Rep 11:24112. https://doi.org/10.1038/s41598-021-03585-1

    Article  Google Scholar 

  3. Bakkouri I, Afdel K (2020) Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images. Multimed Tools Appl 79:20483–20518. https://doi.org/10.1007/s11042-019-07988-1

    Article  Google Scholar 

  4. Bakkouri I, Afdel K, Benois-Pineau J, Initiative GCFA (2022) BG-3DM2F: bidirectional gated 3D multi-scale feature fusion for Alzheimer’s disease diagnosis. Multimed Tools Appl 81:10743–10776. https://doi.org/10.1007/s11042-022-12242-2

    Article  Google Scholar 

  5. Bui T-A, Lee P-J, Lum K-Y, Loh C, Tan K (2020) Deep learning for landslide recognition in satellite architecture. IEEE Access 8:143665–143678. https://doi.org/10.1109/access.2020.3014305

    Article  Google Scholar 

  6. Chang H-H, Chan W-C (2021) Automatic Registration of Remote Sensing Images Based on Revised SIFT With Trilateral Computation and Homogeneity Enforcement. IEEE Trans Geosci Remote Sens:1–16. https://doi.org/10.1109/TGRS.2021.3052926

  7. Das I, Stein A, Kerle N et al (2011) Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas. India Landslides 8:293–308. https://doi.org/10.1007/s10346-011-0257-9

    Article  Google Scholar 

  8. Deep learning algorithms for medical image processing. Multimed Tools Appl 79, 9845 (2020). https://doi.org/10.1007/s11042-020-08673-4.

  9. Ghorbanzadeh O, Shahabi H, Crivellari A, Homayouni S, Blaschke T, Ghamisi P (2022) Landslide detection using deep learning and object-based image analysis. Landslides 19:929–939. https://doi.org/10.1007/s10346-021-01843-x

    Article  Google Scholar 

  10. Hwang S, Guevarra IF, Yu B (2009) Slope failure prediction using a decision tree: a case of engineered slopes in South Korea. Eng Geol 104(1–2):126–134. https://doi.org/10.1016/j.enggeo.2008.09.004

    Article  Google Scholar 

  11. Khalifa NE, Loey M, Mirjalili S (2022) A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif Intell Rev 55:2351–2377. https://doi.org/10.1007/s10462-021-10066-4

    Article  Google Scholar 

  12. Khanlari GR, Heidari M, Momeni AA, Abdilor Y (2012) Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Eng Geol 131-132:11–18. https://doi.org/10.1016/j.enggeo.2011.12.006

    Article  Google Scholar 

  13. Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40(9):1095–1113. https://doi.org/10.1007/s002540100310

    Article  Google Scholar 

  14. Lee S, Hwang J, Park I (2013) Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. CATENA 100:15–30. https://doi.org/10.1016/j.catena.2012.07.014

    Article  Google Scholar 

  15. Li L, Cheng S, Wen Z (2021) Landslide prediction based on improved principal component analysis and mixed kernel function least squares support vector regression model. J Mt Sci 18:2130–2142. https://doi.org/10.1007/s11629-020-6396-5

    Article  Google Scholar 

  16. Lu W, Zhao L, Xu R (2021) Remote sensing image processing technology based on mobile augmented reality technology in surveying and mapping engineering. Soft Comput 27:423–433. https://doi.org/10.1007/s00500-021-05650-3

    Article  Google Scholar 

  17. Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123(3):225–234. https://doi.org/10.1016/j.enggeo.2011.09.006

    Article  Google Scholar 

  18. Meena SR, Soares LP, Grohmann CH, van Westen C, Bhuyan K, Singh RP, Floris M, Catani F (2022) Landslide detection in the Himalayas using machine learning algorithms and U-net. Landslides 19:1209–1229. https://doi.org/10.1007/s10346-022-01861-3

    Article  Google Scholar 

  19. Mohan A, Kumar B, Dwivedi R (2021) Review on remote sensing methods for landslide detection using machine and deep learning. Trans Emerg Telecommun Technol 32. https://doi.org/10.1002/ett.3998

  20. Nanare I, Bhoyar D, Balamwar S (2021) Remote sensing satellite image analysis for deforestation in Yavatmal District, Maharashtra, India. 684-688. https://doi.org/10.1109/ICSPC51351.2021.9451744

  21. Nhu V-H, Shirzadi A, Shahabi H, Singh SK, Al-Ansari N, Clague JJ, Jaafari A, Chen W, Miraki S, Dou J, Luu C, Górski K, Thai Pham B, Nguyen HD, Ahmad BB (2020) Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, Naïve Bayes tree, artificial neural network, and support vector machine algorithms. Int J Environ Res Public Health 17(8):2749. https://doi.org/10.3390/ijerph17082749

    Article  Google Scholar 

  22. Pain CD, Egan GF, Chen Z (2022) Deep learning-based image reconstruction and post-processing methods in positron emission tomography for low-dose imaging and resolution enhancement. Eur J Nucl Med Mol Imaging 49:3098–3118. https://doi.org/10.1007/s00259-022-05746-4

    Article  Google Scholar 

  23. Parsa M, Maghsoudi A, Shokouh B (2014) Landslide Susceptibility Mapping of Komroud Sub-basin Using Fuzzy Logic Approach 02

  24. Pawłuszek K, Marczak S, Borkowski A, Tarolli P (2019) Multi-aspect analysis of object-oriented landslide detection based on an extended set of LiDAR-derived terrain features. ISPRS Int J Geo Inf 8(8):321. https://doi.org/10.3390/ijgi8080321

    Article  Google Scholar 

  25. Perkins S (2012) Death toll from landslides vastly underestimated. http://www.nature.com/. http://www.emdat.be/database.

  26. Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365. https://doi.org/10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  27. Qin S, Guo X, Sun J, Qiao S, Zhang L, Yao J, Cheng Q, Zhang Y (2021) Landslide detection from open satellite imagery using distant domain transfer learning. Remote Sens 13:3383. https://doi.org/10.3390/rs13173383

    Article  Google Scholar 

  28. Rasyid AR, Bhandary NP, Yatabe R (2016) Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron Disasters 3:19. https://doi.org/10.1186/s40677-016-0053-x

    Article  Google Scholar 

  29. Roy J, Saha S (2019) Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India. Geoenviron Disasters 6:11. https://doi.org/10.1186/s40677-019-0126-8

    Article  Google Scholar 

  30. Sajadi P, Sang Y-F, Gholamnia M, Bonafoni S (2022) Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan plateau region by five learning algorithms. Geoscience Letters 9. https://doi.org/10.1186/s40562-022-00218-x

  31. San BT (2014) An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: the Candir catchment area (western Antalya, Turkey). Int J Appl Earth Obs Geoinf 26:399–412. https://doi.org/10.1016/j.jag.2013.09.010

    Article  Google Scholar 

  32. Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput sci 2:420. https://doi.org/10.1007/s42979-021-00815-1

    Article  Google Scholar 

  33. Sezer E, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38:8208–8219. https://doi.org/10.1016/j.eswa.2010.12.167

    Article  Google Scholar 

  34. Shahabi H, Hashim M (2015) Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment. Sci Rep 5:9899. https://doi.org/10.1038/srep09899

    Article  Google Scholar 

  35. Shahabi H, Rahimzad M, Tavakkoli Piralilou S, Ghorbanzadeh O, Homayouni S, Blaschke T, Lim S, Ghamisi P (2021) Unsupervised deep learning for landslide detection from multispectral Sentinel-2 imagery. Remote Sens 13(22):4698. https://doi.org/10.3390/rs13224698

    Article  Google Scholar 

  36. Srivastava P, Shukla A, Bansal A (2021) A comprehensive review on soil classification using deep learning and computer vision techniques. Multimed Tools Appl 80:14887–14914. https://doi.org/10.1007/s11042-021-10544-5

    Article  Google Scholar 

  37. Tavakkoli Piralilou S, Shahabi H, Jarihani B, Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena S, Aryal J (2019) Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens 11(21):2575. https://doi.org/10.3390/rs11212575

    Article  Google Scholar 

  38. Thi Ngo PT, Panahi M, Khosravi K, Ghorbanzadeh O, Karimnejad N, Cerda A, Lee S (2020) Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci Front 12:505–519. https://doi.org/10.1016/j.gsf.2020.06.013

    Article  Google Scholar 

  39. Tien Bui D (2012) Modeling of rainfall-induced landslide hazard for the Hoa Binh, province of Vietnam. Norwegian University of Life Sciences. Ph. D Thesis

  40. Ullo SL, Langenkamp MS, Oikarinen TP, DelRosso MP, Sebastianelli A, Piccirillo FP, Sica S (2019) Landslide Geohazard Assessment with Convolutional Neural Networks Using Sentinel-2 Imagery Data. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/igarss.2019.8898632

  41. Wang Y, Wang X, Jian J (2019) Remote sensing landslide recognition based on convolutional neural network. Math Probl Eng 2019:1–12. https://doi.org/10.1155/2019/8389368

    Article  Google Scholar 

  42. Wang H, Zhang L, Yin K, Luo H, Li J (2020) Landslide identification using machine learning. Geosci Front 12:351–364. https://doi.org/10.1016/j.gsf.2020.02.012

    Article  Google Scholar 

  43. Wang Y, Wen H, Sun D, Li Y (2021) Quantitative assessment of landslide risk based on susceptibility mapping using random Forest and GeoDetector. Remote Sens 13(13):2625. https://doi.org/10.3390/rs13132625

    Article  Google Scholar 

  44. Yalcin A, Reis S, Aydinoglu A, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287. https://doi.org/10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  45. Yang G, Liu J, Qu M, Wang S, Ye D, Zhong H (2021) FaasRS: Remote Sensing Image Processing System on Serverless Platform. 258–267. https://doi.org/10.1109/COMPSAC51774.2021.00044

  46. Ye C, Wei R, Ge Y et al (2022) GIS-based spatial prediction of landslide using road factors and random forest for Sichuan-Tibet Highway. J Mt Sci 19:461–476. https://doi.org/10.1007/s11629-021-6848-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payal Varangaonkar.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

All authors declares that they has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varangaonkar, P., Rode, S.V. Lightweight deep learning model for automatic landslide prediction and localization. Multimed Tools Appl 82, 33245–33266 (2023). https://doi.org/10.1007/s11042-023-15049-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15049-x

Keywords

Navigation