Skip to main content

Advertisement

Log in

A high quality interpolation-based reversible data hiding technique using dual images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Increasing data hiding capacity and reducing cover image distortions are the main objectives of any data hiding technique. Moreover, some applications require the reversibility of the data hiding technique so that the original cover image is exactly recovered in the extraction step. Interpolation-based data hiding techniques have the advantage of providing high data hiding capacity. However, they suffer two drawbacks: they are not truly reversible and introduce high distortions to the cover image. This paper presents a new interpolation-based data hiding technique that is adaptive, truly reversible, vastly reduces the cover image distortion, and takes the sensitivity of the Human Visual System (HVS) into consideration. Unlike other interpolation techniques, our proposed technique eliminates the down-scaling and expansion steps in typical interpolation-based techniques. Instead, it embeds data into the original cover image. It uses a simple, efficient interpolation algorithm to take the sensitivity of the HVS into account by limiting the distortions in smooth regions of the cover image where the HVS is more sensitive to distortions. Using dual cover images and an improved interpolation algorithm achieves reversibility, vastly reduces cover image distortion, and achieves high data hiding capacity. The downscaling and expansion step in typical interpolation-based data hiding techniques results in poor quality cover images with a peak signal-to-noise ratio (PSNR) in the neighborhood of 25 dB. The proposed technique eliminates this step and produces high-quality stego images with 42dBs minimum average PSNR values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Abdulla AA (2015) Exploiting similarities between secret and cover images for improved embedding efficiency and security in digital steganography. Doctoral thesis, University of Buckingham. http://bear.buckingham.ac.uk/id/eprint/149

  2. Abdulla AA, Sellahewa H, Jassim SA (2014) Stego Quality Enhancement by Message Size Reduction and Fibonacci Bit-Plane Mapping. In: Chen L, Mitchell C (eds) Security Standardisation Research. SSR 2014. Lecture notes in computer science, vol 8893. Springer, Cham. https://doi.org/10.1007/978-3-319-14054-4_10

  3. Abdulla AA, Jassim SA, Sellahewa H (2013) Secure steganography technique based on Bitplane indexes. 2013 IEEE International Symposium on Multimedia. https://doi.org/10.1109/ISM.2013.55

  4. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156. https://doi.org/10.1109/TIP.2004.828418

    Article  MathSciNet  Google Scholar 

  5. Chang YT, Huang CT, Lee VF, Wang SJ (2013) Image interpolating based data hiding in conjunction with pixel-shifting of histogram. J Supercomput 66:1093–1110. https://doi.org/10.1007/s11227-013-1016-6

    Article  Google Scholar 

  6. Chen X, Guo W (2020) Reversible data hiding scheme based on fully exploiting the orientation combinations of dual stego-images. Int J Netw Secur 22:126–135

    Google Scholar 

  7. Chen M, Chen Z, Zeng X, Xiong Z (2009) Reversible data hiding using additive prediction error expansion. Proceedings of the 11th ACM workshop on multimedia and security, Princeton, New Jersey, USA. https://doi.org/10.1145/1597817.1597822

  8. Chen Y-q, Sun W-j, Li L-y, Chang C-C, Xu W (2020) An efficient general data hiding scheme based on image interpolation. J Inf Secur Appl 54:2214–2126. https://doi.org/10.1016/j.jisa.2020.102584

    Article  Google Scholar 

  9. Chowdhuri P, Pal P, Jana B (2018) Improved data hiding capacity through repeated embedding using modified weighted matrix for color image. Int J Comput Appl 41:218–232. https://doi.org/10.1080/1206212X.2017.1422587

    Article  Google Scholar 

  10. Coatrieux G, Pan W, Cuppens-Boulahia N, Cuppens F, Roux C (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inf Forensics Secur 8:111–118. https://doi.org/10.1109/TIFS.2012.2224108

    Article  Google Scholar 

  11. Debasis G, Biswapati J, Kumar MS (2016) Dual image based reversible data hiding scheme using three pixel value difference expansion. Int J Netw Secur 18:633–643. https://doi.org/10.1007/978-81-322-2752-6_40

    Article  Google Scholar 

  12. Dinu C (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensics Secur 6:873–882. https://doi.org/10.1109/TIFS.2011.2145372

    Article  Google Scholar 

  13. El-sayed HS, El-Zoghdy SF, Faragallah OS (2016) Adaptive difference expansion-based reversible data hiding scheme for digital images. Arab J Sci Eng 41:1091–1107. https://doi.org/10.1007/s13369-015-1956-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Gujjunoori S, Oruganti M (2019) Difference expansion based reversible data embedding and edge detection. Multimed Tools Appl 78:25889–25917. https://doi.org/10.1007/s11042-019-07767-y

    Article  Google Scholar 

  15. Hong W, Chen TS (2011) Reversible data embedding for high-quality images using interpolation and reference pixel distribution mechanism. J Vis Commun Image Represent 22:131–140. https://doi.org/10.1016/j.jvcir.2010.11.004

    Article  Google Scholar 

  16. Hong W, Chen TC, Shiu CS (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82:1833–1842. https://doi.org/10.1016/j.jss.2009.05.051

    Article  Google Scholar 

  17. Hong W, Chen TS, Chang SCW (2010) A high capacity reversible data hiding scheme using orthogonal projection and prediction error modification. Signal Process 90:2911–2922. https://doi.org/10.1016/j.sigpro.2010.04.012

    Article  MATH  Google Scholar 

  18. Hong W, Chen T, Wu H (2012) An improved reversible data-hiding in encrypted images using side match. IEEE Signal Process Lett 19:199–202. https://doi.org/10.1109/LSP.2012.2187334

    Article  Google Scholar 

  19. Hong W, Chen TS, Wu MC (2013) An improved human visual system based reversible data hiding method using adaptive histogram modification. Opt Commun 291:87–97. https://doi.org/10.1016/j.optcom.2012.10.081

    Article  Google Scholar 

  20. Hu J, Li T (2015) Reversible steganography using extended image interpolation technique. Comput Electr Eng 46:447–455. https://doi.org/10.1016/j.compeleceng.2015.04.014

    Article  Google Scholar 

  21. Hu YJ, Lee HK, Li JW (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260. https://doi.org/10.1109/TCSVT.2008.2009252

    Article  Google Scholar 

  22. Huang L-C, Chiou S-F, Hwang M-S (2020) A Reversible Data Hiding Based on Histogram Shifting of Prediction Errors for Two-Tier Medical Images. Informatica 32(1):69–84. https://doi.org/10.15388/20-INFOR422

    Article  MathSciNet  Google Scholar 

  23. Jana B (2016) High payload reversible data hiding scheme using weighted matrix. Optik 127:3347–3358. https://doi.org/10.1016/j.ijleo.2015.12.055

    Article  Google Scholar 

  24. Jung KH (2017) A survey of interpolation-based reversible data hiding methods. Multimed Tools Appl 77:7795–7810. https://doi.org/10.1007/s11042-017-5066-2

    Article  Google Scholar 

  25. Jung KH, Yoo KY (2009) Data-hiding method using image interpolation. Comput Stand Interfaces 31:465–470. https://doi.org/10.1016/j.csi.2008.06.001

    Article  Google Scholar 

  26. Jung KH, Yoo KY (2015) Steganographic method based on interpolation and LSB substitution of digital images. Multimed Tools Appl 74:2143–2155. https://doi.org/10.1007/s11042-013-1832-y

    Article  Google Scholar 

  27. Jung S-W, Ha LT, Ko S-J (2011) A new histogram modification based reversible data hiding algorithm considering the human visual system. IEEE Signal Process Lett 18(2):95–98. https://doi.org/10.1109/LSP.2010.2095498

    Article  Google Scholar 

  28. Kim H-J, Sachnev V, Shi Y-Q, Nam J, Choo H-G (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensic Secur 3:456–465. https://doi.org/10.1109/TIFS.2008.924600

    Article  Google Scholar 

  29. Kim S, Qu X, Sachnev V, Kim HJ (2019) Skewed histogram shifting for reversible data hiding using a pair of extreme predictions. IEEE Trans Circuits Syst Video Technol 29(11):3236–3246. https://doi.org/10.1109/TCSVT.2018.2878932

    Article  Google Scholar 

  30. Kumar M, Agrawal S (2016) Reversible data hiding based on prediction error expansion using adjacent pixels. Security Comm Networks 9(16):3703–3712. https://doi.org/10.1002/sec.1575

    Article  Google Scholar 

  31. Kumar R, Chand S, Singh S (2018) An improved histogram-shifting-imitated reversible data hiding based on HVS characteristics. Multimed Tools Appl 77:13445–13457. https://doi.org/10.1007/s11042-017-4960-y

    Article  Google Scholar 

  32. Lee CF, Huang YL (2012) An efficient image interpolation increasing payload in reversible data hiding. Expert Syst Appl 39(8):6712–6719. https://doi.org/10.1016/j.eswa.2011.12.019

    Article  Google Scholar 

  33. Lee CF, Chen HL, Tso HK (2010) Embedding capacity raising in reversible data hiding based on prediction of difference expansion. J Syst Softw 83(10):1864–1872. https://doi.org/10.1016/j.jss.2010.05.078

    Article  Google Scholar 

  34. Lee C-F, Shen J-J, Wu Y-J, Agrawal S (2019) Reversible Data Hiding Scheme Based on Difference Expansion Using Shiftable Block Strategy for Enhancing Image Fidelity. IEEE 10th International Conference on Awareness Science and Technology. https://doi.org/10.1109/ICAwST.2019.8923138

  35. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. Image Process 20:3524–3532. https://doi.org/10.1109/tip.2011.2150233

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu L, Chen T, Zhu S, Hong W, Si X (2014) A reversible data-hiding method using improved neighbor mean interpolation and random-block division. Inf Technol J 13:2374–2384. https://doi.org/10.3923/itj.2014.2374.2384

    Article  Google Scholar 

  37. Lu TC (2017) An interpolation-based lossless hiding scheme based on message recoding mechanism. Optik 130:1377–1396. https://doi.org/10.1016/j.ijleo.2016.11.176

    Article  Google Scholar 

  38. Lu TC, Chang CC, Huang Y-H (2014) High capacity reversible hiding scheme based on interpolation, difference expansion, and histogram shifting. Multimed Tools Appl 72:417–435. https://doi.org/10.1007/s11042-013-1369-0

    Article  Google Scholar 

  39. Lu TC, Lin MC, Huang CC, Deng KM (2016) Reversible data hiding based on image interpolation with a secret message reduction strategy. Int J Comput Softw Eng 1:102–112. https://doi.org/10.15344/2456-4451/2016/102

    Article  Google Scholar 

  40. Luo L et al (2010) Reversible image watermarking using interpolation technique. IEEE Inf Forensics Security 5:187–193. https://doi.org/10.1109/TIFS.2009.2035975

    Article  Google Scholar 

  41. Ma K, Zhang W, Zhao X, Yu N, Li F (2013) Reversible data-hiding in encrypted images by reserving room before encryption. IEEE Trans Inf Forensics Secur 8:553–562. https://doi.org/10.1109/TIFS.2013.2248725

    Article  Google Scholar 

  42. Mahasree M, Puviarasan N, Aruna P (2020) High capacity reversible data hiding scheme with interpolation and threshold-based bit allocation technique. J Mech Continua Math Sci 15:2454–7190. https://doi.org/10.26782/jmcms.2020.07.00062

    Article  Google Scholar 

  43. Malik A, Sikka G, Verma HA (2020) A reversible data hiding scheme for interpolated images based on pixel intensity range. Multimed Tools Appl 79:18005–18031. https://doi.org/10.1007/s11042-020-08691-2

    Article  Google Scholar 

  44. Miri A, Faez K (2018) An image steganography method based on integer wavelet transform. Multimed Tools Appl 77:13133–13144. https://doi.org/10.1007/s11042-017-4935-z

    Article  Google Scholar 

  45. Mohammad Ahmad A (2021) A low distortion reversible data hiding technique based on prediction difference expansion. JJEE 7(2):130–146. https://doi.org/10.5455/jjee.204-1601584525

    Article  Google Scholar 

  46. Mohammad AA, Al-Haj A, Farfoura M (2019) An improved capacity data hiding technique based on image interpolation. Multimed Tools Appl 78:7181–7205. https://doi.org/10.1007/s11042-018-6465-8

    Article  Google Scholar 

  47. Niels P, Peter H (2003) Hide and Seek: an introduction to steganography. IEEE Secur Priv 3:32–44. https://doi.org/10.1109/MSECP.2003.1203220

    Article  Google Scholar 

  48. Rudder A, Goodridge W, Mohammed S (2013) Using Bias optimization for reversible data hiding using image interpolation. Int J Netw Secur Appl 5:65–76. https://doi.org/10.48550/arXiv.1305.4102

    Article  Google Scholar 

  49. Sabeen GPV, Sajila MK, Bindiya MV (2016) A two stage data hiding scheme with high capacity based on interpolation and difference expansion. Procedia Technol 24:1311–1316. https://doi.org/10.1016/j.protcy.2016.05.129

    Article  Google Scholar 

  50. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Circuits Syst Video Technol 19:989–999. https://doi.org/10.1109/TCSVT.2009.2020257

    Article  Google Scholar 

  51. Sanglikar H et al (2015) Reversible data-hiding in encrypted images by reserving room before encryption and LSB matching algorithm. Int J Tech Res App 3:52–54. https://doi.org/10.1109/TIFS.2013.2248725

    Article  Google Scholar 

  52. Subburam S, Selvakumar S, Geetha S (2017) High performance reversible data hiding through multilevel histogram modification in lifting wavelet transform. Multimed Tools Appl 77:7071–7095. https://doi.org/10.1007/s11042-017-4622-0

    Article  Google Scholar 

  53. Thodi DM, Rodríguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730. https://doi.org/10.1109/TIP.2006.891046

    Article  MathSciNet  Google Scholar 

  54. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896. https://doi.org/10.1109/TCSVT.2003.815962

    Article  Google Scholar 

  55. Tsai P, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89:1129–1143. https://doi.org/10.1016/j.sigpro.2008.12.017

    Article  MATH  Google Scholar 

  56. Tseng H, Hsieh C (2009) Prediction based reversible data hiding. Inf Sci 179:2460–2469. https://doi.org/10.1016/j.ins.2009.03.014

    Article  MATH  Google Scholar 

  57. Vidya H, Neela M (2013) Improving security in digital images through watermarking using enhanced histogram modification. In: Advances in Intelligent Systems and Computing, vol 177. Springer, pp 175–180. https://doi.org/10.1007/978-3-642-31552-7_19

    Chapter  Google Scholar 

  58. Wang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  59. Wang XT, Chang CC, Nguyen TS, Li MC (2013) Reversible data hiding for high quality images exploiting interpolation and direction order mechanism. Digital Signal Process 23:569–577. https://doi.org/10.1016/j.dsp.2012.06.015

    Article  MathSciNet  Google Scholar 

  60. Zhang X (2012) Separable reversible data hiding in encrypted image. IEEE Trans Inf Forensics Secur 7:826–832. https://doi.org/10.1109/TIFS.2011.2176120

    Article  Google Scholar 

  61. Zhang S, Gao T, Yang L (2016) A reversible data hiding scheme based on histogram modification in integer DWT domain for BTC compressed images. Int J Netw Secur 18:718–727. https://doi.org/10.14257/ijsia.2014.8.2.31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad A. Mohammad.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, A.A. A high quality interpolation-based reversible data hiding technique using dual images. Multimed Tools Appl 82, 36713–36737 (2023). https://doi.org/10.1007/s11042-023-15092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15092-8

Keywords

Navigation