Skip to main content
Log in

Lightweight video salient object detection via channel-shuffle enhanced multi-modal fusion network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Video salient object detection (VSOD) has witnessed great development with the application of deep neural networks. However, the high computational cost of neural networks has hindered the deployment of VSOD models in real-world applications.In this work, we focus on developing lightweight VSOD model. The main issues involved in designing lightweight video saliency models include: how to combine multi-modal information (i.e., spatial and temporal information) and model multi-scale spatial context in an efficient setting. To tackle these issues, we propose a lightweight neural network architecture for VSOD. We start by adopting the ImageNet-pretrained ShuffleNet-V2 for deep feature extraction. Based on the backbone network, a Depth-wise Multi-scale Pooling Module (DMPM) is proposed to aggregate multi-scale spatial context information, which occupies only a small amount of parameters and computational overheads. Most importantly, a Shuffle enhanced Multi-modal Fusion Module (SMFM) is proposed to fuse spatial and temporal information progressively in an efficient manner, deriving the final saliency prediction. With these proposed modules, our method could achieve competitive detection accuracy with current outstanding methods while holding a much smaller model size. Specifically, the proposed model could run at a GPU speed of 49.2 FPS and hold only 1.9M parameters, making it suitable for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article.

References

  1. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: 2009 IEEE Conference on computer vision and pattern recognition, pp 1597–1604. https://doi.org/10.1109/CVPR.2009.5206596

  2. Brox T, Malik J (2010) Object segmentation by long term analysis of point trajectories. In: Daniilidis K., Maragos P., Paragios N. (eds) Computer vision – ECCV 2010, pp 282–295. Springer Berlin Heidelberg, Berlin, Heidelberg

  3. Chen C, Li S, Wang Y, Qin H, Hao A (2017) Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion. IEEE Trans Image Process 26(7):3156–3170. https://doi.org/10.1109/TIP.2017.2670143

    Article  MathSciNet  Google Scholar 

  4. Chen C, Wang G, Peng C, Fang Y, Zhang D, Qin H (2021) Exploring rich and efficient spatial temporal interactions for real-time video salient object detection. IEEE Trans Image Process 30:3995–4007. https://doi.org/10.1109/TIP.2021.3068644

    Article  Google Scholar 

  5. Chen Y, Zou W, Tang Y, Li X, Xu C, Komodakis N (2018) Scom: Spatiotemporal constrained optimization for salient object detection. IEEE Trans Image Process 27(7):3345–3357. https://doi.org/10.1109/TIP.2018.2813165

    Article  MathSciNet  Google Scholar 

  6. Cheng MM, Mitra NJ, Huang X, Torr PHS, Hu SM (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37 (3):569–582. https://doi.org/10.1109/TPAMI.2014.2345401

    Article  Google Scholar 

  7. Fan DP, Cheng MM, Liu Y, Li T, Borji A (2017) Structure-measure: A New Way to Evaluate Foreground Maps. In: IEEE International Conference on Computer Vision (ICCV), pp 4548–4557. IEEE. http://dpfan.net/smeasure/

  8. Fan DP, Wang W, Cheng MM, Shen J (2019) Shifting more attention to video salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  9. Feng M, Lu H, Ding E (2019) Attentive feedback network for boundary-aware salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  10. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition

  11. Hou Q, Cheng MM, Hu X, Borji A, Tu Z, Torr P (2019) Deeply supervised salient object detection with short connections. IEEE Trans Pattern Anal Mach Intell 41(4):815–828

    Article  Google Scholar 

  12. Hou Q, Cheng MM, Hu X, Borji A, Tu Z, Torr PHS (2017) Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  13. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications

  14. Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: Evolution of optical flow estimation with deep networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17

  15. Itti L (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans Image Process 13(10):1304–1318. https://doi.org/10.1109/TIP.2004.834657

    Article  Google Scholar 

  16. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259. https://doi.org/10.1109/34.730558

    Article  Google Scholar 

  17. Kim H, Kim Y, Sim JY, Kim CS (2015) Spatiotemporal saliency detection for video sequences based on random walk with restart. IEEE Trans Image Process 24(8):2552–2564. https://doi.org/10.1109/TIP.2015.2425544

    Article  MathSciNet  Google Scholar 

  18. Le TN, Sugimoto A (2018) Video salient object detection using spatiotemporal deep features. IEEE Trans Image Process 27(10):5002–5015. https://doi.org/10.1109/TIP.2018.2849860

    Article  MathSciNet  Google Scholar 

  19. Lee H, Kim D (2018) Salient region-based online object tracking. In: 2018 IEEE Winter conference on applications of computer vision (WACV), pp 1170–1177. https://doi.org/10.1109/WACV.2018.00133

  20. Li F, Kim T, Humayun A, Tsai D, Rehg JM (2013) Video segmentation by tracking many figure-ground segments. In: 2013 IEEE International conference on computer vision, pp 2192–2199. https://doi.org/10.1109/ICCV.2013.273

  21. Li G, Xie Y, Wei T, Wang K, Lin L (2018) Flow guided recurrent neural encoder for video salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  22. Li H, Chen G, Li G, Yu Y (2019) Motion guided attention for video salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)

  23. Li J, Xia C, Chen X (2018) A benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection. IEEE Trans Image Process 27(1):349–364. https://doi.org/10.1109/TIP.2017.2762594

    Article  MathSciNet  Google Scholar 

  24. Li S, Seybold B, Vorobyov A, Lei X, Kuo CCJ (2018) Unsupervised video object segmentation with motion-based bilateral networks. In: Proceedings of the European Conference on Computer Vision (ECCV)

  25. Li Y, Chen Y, Dai X, Chen D, Liu M, Yuan L, Liu Z, Zhang L, Vasconcelos N (2021) Micronet: Improving image recognition with extremely low flops. In: 2021 IEEE/CVF International conference on computer vision (ICCV), pp 458–467. https://doi.org/10.1109/ICCV48922.2021.00052

  26. Liu Y, Gu YC, Zhang XY, Wang W, Cheng MM (2020) Lightweight salient object detection via hierarchical visual perception learning. IEEE Trans Cybern, pp 1–11. https://doi.org/10.1109/TCYB.2020.3035613

  27. Liu Z, Li J, Ye L, Sun G, Shen L (2017) Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation. IEEE Trans Circuits Syst Video Technol 27 (12):2527–2542. https://doi.org/10.1109/TCSVT.2016.2595324

    Article  Google Scholar 

  28. Ma N, Zhang X, Zheng HT, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture design

  29. Mehta S, Rastegari M, Anat Caspi LS, Hajishirzi H (2018) Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In: ECCV

  30. Paszke A, Chaurasia A, Kim S, Culurciello E (2016) Enet : A deep neural network architecture for real-time semantic segmentation

  31. Perazzi F, Pont-Tuset J, McWilliams B, Van Gool L, Gross M, Sorkine-Hornung A (2016) A benchmark dataset and evaluation methodology for video object segmentation. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), pp 724–732. https://doi.org/10.1109/CVPR.2016.85

  32. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2019) Mobilenetv2: Inverted residuals and linear bottlenecks

  33. Shafieyan F, Karimi N, Mirmahboub B, Samavi S, Shirani S (2014) Image seam carving using depth assisted saliency map. In: 2014 IEEE International conference on image processing (ICIP), pp 1155–1159. https://doi.org/10.1109/ICIP.2014.7025230

  34. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations

  35. Song H, Wang W, Zhao S, Shen J, Lam KM (2018) Pyramid dilated deeper convlstm for video salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV)

  36. Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV (2019) Mnasnet: Platform-aware neural architecture search for mobile

  37. Tan M, Pang R, Le QV (2020) Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  38. Tang Y, Zou W, Jin Z, Chen Y, Hua Y, Li X (2019) Weakly supervised salient object detection with spatiotemporal cascade neural networks. IEEE Trans Circuits Syst Video Technol 29(7):1973–1984. https://doi.org/10.1109/TCSVT.2018.2859773

    Article  Google Scholar 

  39. Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X (2017) Learning to detect salient objects with image-level supervision. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), pp 3796–3805. https://doi.org/10.1109/CVPR.2017.404

  40. Wang W, Shen J, Shao L (2015) Consistent video saliency using local gradient flow optimization and global refinement. IEEE Trans Image Process 24 (11):4185–4196. https://doi.org/10.1109/TIP.2015.2460013

    Article  MathSciNet  Google Scholar 

  41. Wang W, Shen J, Shao L (2018) Video salient object detection via fully convolutional networks. IEEE Trans Image Process 27(1):38–49. https://doi.org/10.1109/TIP.2017.2754941

    Article  MathSciNet  Google Scholar 

  42. Wang W, Song H, Zhao S, Shen J, Zhao S, Hoi SCH, Ling H (2019) Learning unsupervised video object segmentation through visual attention. In: CVPR

  43. Yan P, Li G, Xie Y, Li Z, Wang C, Chen T, Lin L (2019) Semi-supervised video salient object detection using pseudo-labels. In: Proceedings of the IEEE International Conference on Computer Vision, pp 7284–7293

  44. Zhang X, Zhou X, Lin M, Sun J (2017) Shufflenet: An extremely efficient convolutional neural network for mobile devices

  45. Zhao JX, Liu JJ, Fan DP, Cao Y, Yang J, Cheng MM (2019) Egnet: Edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)

  46. Zhao W, Zhang J, Li L, Barnes N, Liu N, Han J (2021) Weakly supervised video salient object detection

  47. Zhao X, Pang Y, Zhang L, Lu H, Zhang L (2020) Suppress and balance: A simple gated network for salient object detection

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 62101316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Huang.

Ethics declarations

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interests

Authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Xu, Z. Lightweight video salient object detection via channel-shuffle enhanced multi-modal fusion network. Multimed Tools Appl 83, 1025–1039 (2024). https://doi.org/10.1007/s11042-023-15251-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15251-x

Keywords

Navigation