Skip to main content
Log in

Hyperspectral image classification using K-plane clustering and kernel principal component analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach for hyperspectral image classification. The pixels’ spectra are grouped into clusters in an unsupervised manner using an improved version of plane based clustering. Since the pixels containing the same substances are linearly correlated, the proposed plane-based clustering can effectively group the data points. Plane-based clustering is a more appropriate choice than point based clustering schemes for grouping the datasets which are distributed around hyperplanes instead of hyperspheres. Then, Kernel Principal Component Analysis (KPCA) is applied to each cluster individually to obtain multiple kernel vectors for each data point. Applying non-linear kernels, can greatly increase the discrimination power of the acquired features. The feature vectors are extracted by a weighted linear combination of the kernel components obtained from each cluster. We compute optimal weights using the cluster hyperplane parameters. Since the whole procedure is performed in an unsupervised manner, the proposed approach can enhance the generalization power of the extracted features. Then, morphological attribute filters are applied to the feature maps to effectively utilize spatial relations. Hence, the acquired compact feature vectors include both spectral and spatial information. SVM is used for classification. The experiments performed on three well-known hyperspectral datasets reveal the effectiveness of the proposed feature extraction approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the following repository: https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_ScenesReferences

Abbreviations

AP:

Attribute Profile

CNN:

Convolutional Neural Network

EMAP:

Extended Morphological Attribute Profile

GMM:

Gaussian Mixture Model

HSI:

Hyperspectral Image

KPC:

K-Plane Clustering

KPCA:

Kernel Principal Component Analysis

LDA:

Linear Discriminant Analysis

LKPPC:

Local K-Proximal Plane Clustering

MAP:

Morphological Attribute Profile

PCA:

Principal Component Analysis

SVM:

Support Vector Machine

References

  1. Binol, H (2018) Ensemble learning based multiple kernel principal component analysis for dimensionality reduction and classification of hyperspectral imagery. Math Probl Eng https://doi.org/10.1155/2018/9632569

  2. Bioucas-Dias, JM, Plaza, A, Dobigeon, N, Parente, M, Du, Q, Gader, P, Chanussot, J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Select Top Appl Earth Observ Remote Sens https://doi.org/10.1109/JSTARS.2012.2194696

  3. Bradley, PS, Mangasarian, OL (2000) K-Plane Clustering. J Glob Optim https://doi.org/10.1023/A:1008324625522

  4. Cai, W, Chen, S, Zhang, D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn https://doi.org/10.1016/j.patcog.2006.07.011

  5. Camps-Valls, G, Bruzzone, L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2005.846154

  6. Dalla Mura, M, Benediktsson, JA, Waske, B, Bruzzone, L (2010a) Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int J Remote Sens https://doi.org/10.1080/01431161.2010.512425

  7. Dalla Mura, M, Benediktsson, JA, Waske, B, Bruzzone, L (2010b) Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2010.2048116

  8. Fang L, Liu G, Li S, Ghamisi P, Benediktsson JA (2018) Hyperspectral image classification with squeeze multibias network. IEEE Trans Geosci Remote Sens 57(3):1291–1301

    Article  Google Scholar 

  9. Fauvel, M, Chanussot, J, Benediktsson, JA (2006) Kernel principal component analysis for feature reduction in hyperspectrale images analysis. Proceedings of the 7th Nordic signal processing symposium, NORSIG 2006. https://doi.org/10.1109/NORSIG.2006.275232

  10. Fauvel, M, Benediktsson, JA, Chanussot, J, Sveinsson, JR (2008) Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2008.922034

  11. Fauvel, M, Chanussot, J, Benediktsson, JA (2009). Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. Eurasip J Adv Signal Process https://doi.org/10.1155/2009/783194

  12. Gu, Y, Liu, T, Jia, X, Benediktsson, JA, Chanussot, J (2016) Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2015.2514161

  13. Gu, Y, Chanussot, J, Jia, X, Benediktsson, JA (2017) Multiple kernel learning for hyperspectral image classification: a review. In IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2017.2729882

  14. He, Z, Liu, L, Deng, R, Shen, Y (2016) Low-rank group inspired dictionary learning for hyperspectral image classification. Signal Process https://doi.org/10.1016/j.sigpro.2015.09.004

  15. He, Z, Hu, J, Wang, Y (2018) Low-rank tensor learning for classification of hyperspectral image with limited labeled samples. Signal Process https://doi.org/10.1016/j.sigpro.2017.11.007

  16. Iordache, MD, Bioucas-Dias, JM, Plaza, A (2011) Sparse unmixing of hyperspectral data. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2010.2098413

  17. Jia S, Jiang S, Lin Z, Li N, Xu M, Yu S (2021) A survey: deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 448:179–204

    Article  Google Scholar 

  18. Keshava, N, Mustard, JF (2002) Spectral unmixing. IEEE Signal Process Mag https://doi.org/10.1109/79.974727

  19. Kuo, BC, Ho, HH, Li, CH, Hung, CC, Taur, JS (2014) A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification. IEEE J Select Top Appl Earth Observ Remote Sens https://doi.org/10.1109/JSTARS.2013.2262926

  20. Leahy, R (1993) An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans Pattern Anal Mach Intell https://doi.org/10.1109/34.244673

  21. Lee, Hyungtae, and Heesung Kwon (2017) Going deeper with contextual CNN for hyperspectral image classification. IEEE Transactions on Image Processing 26(10):4843–4855

  22. Li, J, Marpu, PR, Plaza, A, Bioucas-Dias, JM, Benediktsson, JA (2013) Generalized composite kernel framework for hyperspectral image classification. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2012.2230268

  23. Li, Yuan, Qizhi Xu, Wei Li, and Jinyan Nie (2020) Automatic clustering-based two-branch CNN for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 59(9):7803–7816

  24. Manolakis, D, Lockwood, R, Cooley, T (2016) Hyperspectral imaging remote Sensing_Physics, sensors, and algorithms. Hyperspectral Imaging Remote Sens

  25. Melgani, F, Bruzzone, L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2004.831865

  26. Mirzaei, S (2019) Hyperspectral image classification using non-negative tensor factorization and multinomial logistic regression. J Appl Remote Sens https://doi.org/10.1117/1.jrs.13.026501

  27. Mirzaei, S, Van Hamme, H, Khosravani, S (2019) Hyperspectral image classification using non-negative tensor factorization and 3D convolutional neural networks. Signal Process Image Commun https://doi.org/10.1016/j.image.2019.05.004

  28. Nascimento, JMP, Dias, JMB (2005) Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2005.844293

  29. Pan, B, Shi, Z, Xu, X (2018) MugNet: deep learning for hyperspectral image classification using limited samples. ISPRS J Photogramm Remote Sens https://doi.org/10.1016/j.isprsjprs.2017.11.003

  30. Pande S, Banerjee B (2022) HyperLoopNet: hyperspectral image classification using multiscale self-looping convolutional networks. ISPRS J Photogramm Remote Sens 183:422–438

    Article  Google Scholar 

  31. Richards, JA, Jia, X (1999) Remote Sensing Digital Image Analysis. Remote Sens Digit Image Anal https://doi.org/10.1007/978-3-662-03978-6

  32. Schölkopf, B, Smola, A, Müller, KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput https://doi.org/10.1162/089976698300017467

  33. Yang, Zhi-Min, Yan-Ru Guo, Chun-Na Li, and Yuan-Hai Shao (2015) Local k-proximal plane clustering. Neural Computing and Applications 26:199–211

  34. Zhong, Z, Li, J, Luo, Z, Chapman, M (2018) Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2017.2755542

  35. Zhu J, Fang L, Ghamisi P (2018) Deformable convolutional neural networks for hyperspectral image classification. IEEE Geosci Remote Sens Lett 15(8):1254–1258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayeh Mirzaei.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, S. Hyperspectral image classification using K-plane clustering and kernel principal component analysis. Multimed Tools Appl 82, 47387–47403 (2023). https://doi.org/10.1007/s11042-023-15437-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15437-3

Keywords

Navigation