Skip to main content
Log in

Interpolation based dual image reversible data hiding using trinary encoding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This work proposes a Dual Image Reversible Data Hiding (DIRDH) scheme using interpolation and trinary encoding of secret data. Trinary encoding shows promise because it encodes 3-bit binary data to 2-bit trinary data from the set {−1, 0, 1}. This can be directly used as shifts in the cover pixel values to embed the data without any further processing. The main issue is that the encoding generates similar codes for some combinations of binary bits and makes it necessary to use auxiliary data. Thus, the auxiliary data becomes very difficult to handle with increasing payloads and needs to be sent as a separate file to the receiver. The proposed scheme avoids this problem by using interpolation to create space for the secret data while completely eliminating the need for auxiliary data. The original image is first interpolated to create the cover image and the trinary encoding is used to generate the shifts. The shifts are added to the interpolated pixels to generate the stego image. The modification to the processing of the cover image helps to eliminate the location map completely. Results show that the stego images have an average Peak Signal to Noise Ratio (PSNR) of 50.42 dB while improving the effective embedding capacity from 1.1 bits per pixel (bpp) to 1.2bpp. This is an improvement of about 9% over the previous trinary encoding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The images and data used in this paper are sourced from open-source datasets as mentioned in Section 4. The links to the datasets are provided in the Reference section on reference number [10, 34].

References

  1. Abdulla AA, Jassim SA, Sellahewa H (2013) Secure steganography technique based on bitplane indexes. Proc - 2013 IEEE Int Symp multimedia. ISM 2013:287–291. https://doi.org/10.1109/ISM.2013.55

    Article  Google Scholar 

  2. Abdulla AA, Jassim SA, Sellahewa H (2013) Efficient high-capacity steganography technique. In: Agaian SS, Jassim SA, Du EY (eds) Mobile multimedia/image processing, security, and applications 2013. SPIE, pp 63–73

  3. Abdulla AAA, Sellahewa H, Jassim SA (2014) Steganography based on pixel intensity value decomposition. In: Agaian SS, Jassim SA, Du EY (eds) Mobile multimedia/image processing, security, and applications 2014. SPIE, pp 19–27

  4. Agrawal S, Kumar M (2017) Mean value based reversible data hiding in encrypted images. Opt (Stuttg) 130:922–934. https://doi.org/10.1016/j.ijleo.2016.11.059

    Article  Google Scholar 

  5. Arham A, Nugroho HA, Adji TB (2017) Multiple layer data hiding scheme based on difference expansion of quad. Signal Process 137:52–62. https://doi.org/10.1016/j.sigpro.2017.02.001

    Article  Google Scholar 

  6. Bhardwaj R, Aggarwal A (2019) Hiding clinical information in medical images: an encrypted dual-image reversible data hiding algorithm with base-3 numeral framework. Opt (Stuttg) 181:1099–1112. https://doi.org/10.1016/j.ijleo.2018.12.130

    Article  Google Scholar 

  7. Chan CK, Cheng LM (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37:469–474. https://doi.org/10.1016/j.patcog.2003.08.007

    Article  Google Scholar 

  8. Chang C-C, Kieu TD, Chou Y-C (2007) Reversible Data Hiding Scheme Using Two Steganographic Images. In: TENCON 2007–2007 IEEE Region 10 Conference. pp 1–4

  9. Chang CC, Chou YC, Kieu TD (2009) Information hiding in dual images with reversibility. 3rd Int Conf multimed ubiquitous Eng MUE 2009 145–152. https://doi.org/10.1109/MUE.2009.35

  10. Franzen R (1999) Kodak lossless true color image suite. Source: http://r0k.us/graphics/kodak/

  11. Jafar IF, Darabkh KA, Al-Zubi RT, Saifan RR (2016) An efficient reversible data hiding algorithm using two steganographic images. Signal Process 128:98–109. https://doi.org/10.1016/j.sigpro.2016.03.023

    Article  Google Scholar 

  12. Jana B (2016) High payload reversible data hiding scheme using weighted matrix. Opt (Stuttg) 127:3347–3358. https://doi.org/10.1016/j.ijleo.2015.12.055

    Article  Google Scholar 

  13. Lee CF, Huang YL (2013) Reversible data hiding scheme based on dual stegano-images using orientation combinations. Telecommun Syst 52:2237–2247. https://doi.org/10.1007/s11235-011-9529-x

    Article  Google Scholar 

  14. Li X, Yang B, Cheng D, Zeng T (2009) A generalization of LSB matching. IEEE Signal Process Lett 16:69–72. https://doi.org/10.1109/LSP.2008.2008947

    Article  Google Scholar 

  15. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93:198–205. https://doi.org/10.1016/j.sigpro.2012.07.025

    Article  Google Scholar 

  16. Lin JY, Chen Y, Chang CC, Hu YC (2019) Dual-image-based reversible data hiding scheme with integrity verification using exploiting modification direction. Multimed Tools Appl 78:25855–25872. https://doi.org/10.1007/s11042-019-07783-y

    Article  Google Scholar 

  17. Lu TC (2017) An interpolation-based lossless hiding scheme based on message recoding mechanism. Opt (Stuttg) 130:1377–1396. https://doi.org/10.1016/j.ijleo.2016.11.176

    Article  Google Scholar 

  18. Lu TC, Tseng CY, Wu JH (2015) Dual imaging-based reversible hiding technique using LSB matching. Signal Process 108:77–89. https://doi.org/10.1016/j.sigpro.2014.08.022

    Article  Google Scholar 

  19. Lu TC, Wu JH, Huang CC (2015) Dual-image-based reversible data hiding method using center folding strategy. Signal Process 115:195–213. https://doi.org/10.1016/j.sigpro.2015.03.017

    Article  Google Scholar 

  20. Lu TC, Lu YC, Vo TN (2019) Dual-image based high image quality reversible hiding scheme with multiple folding zones. Multimed Tools Appl 78, 34397–34435. https://doi.org/10.1007/s11042-019-07904-7

  21. Mielikainen J (2006) LSB matching revisited. IEEE Signal Process Lett 13:285–287. https://doi.org/10.1109/LSP.2006.870357

    Article  Google Scholar 

  22. Ni ZNZ, Shi Y-QSY-Q, Ansari N, Su WSW (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362. https://doi.org/10.1109/TCSVT.2006.869964

    Article  Google Scholar 

  23. Qin C, Chang CC, Hsu TJ (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimed Tools Appl 74:5861–5872. https://doi.org/10.1007/s11042-014-1894-5

    Article  Google Scholar 

  24. Sabeen Govind PV, Wilscy M (2015) A new reversible data hiding scheme with improved capacity based on directional interpolation and difference expansion. Procedia Comput Sci 46:491–498. https://doi.org/10.1016/j.procs.2015.02.073

    Article  Google Scholar 

  25. Shaji C, Sam IS (2020) Two level data encoding approach for reversible data hiding in dual Stego images. Multimed Tools Appl 79:26969–26993. https://doi.org/10.1007/s11042-020-09273-y

    Article  Google Scholar 

  26. Shastri S, Thanikaiselvan V (2019) Dual image reversible data hiding using trinary assignment and Centre folding strategy with low distortion. J Vis Commun Image Represent 61:130–140. https://doi.org/10.1016/j.jvcir.2019.03.022

    Article  Google Scholar 

  27. Sisheng C, Chin-Chen C (2021) Reversible data hiding based on three shadow images using rhombus magic matrix. J Vis Commun Image Represent 76:103064. https://doi.org/10.1016/j.jvcir.2021.103064

    Article  Google Scholar 

  28. Tang Z, Lu Q, Lao H et al (2018) Error-free reversible data hiding with high capacity in encrypted image. Optik (Stuttg) 157:750–760. https://doi.org/10.1016/j.ijleo.2017.11.154

    Article  Google Scholar 

  29. Thodi DM, Rodríguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16:721–730. https://doi.org/10.1109/TIP.2006.891046

    Article  MathSciNet  Google Scholar 

  30. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13:890–896. https://doi.org/10.1109/TCSVT.2003.815962

    Article  Google Scholar 

  31. Tzu-Chen L, Ning Y, Thanh NV (2021) Dual stego-images based lossless Steganographic scheme with interval scale table. J Comput 32:1–7

    Google Scholar 

  32. Tzu-Chuen L, Ting-Chi C, Jau-Ji S (2020) An effective maximum distortion controlling technology in the dual-image-based reversible data hiding scheme. IEEE Access 8:90824–90837. https://doi.org/10.1109/ACCESS.2020.2994244

    Article  Google Scholar 

  33. Wang J, Chen X, Shi Y (2019) Unconstraint optimal selection of side information for histogram shifting based reversible data hiding. IEEE Access 7:35564–35578. https://doi.org/10.1109/ACCESS.2019.2903079

    Article  Google Scholar 

  34. Waterloo Greyscale Images Set 2 (n.d.) http://links.uwaterloo.ca/Repository.html

  35. Wu HT, Mai W, Meng S et al (2019) Reversible data hiding with image contrast enhancement based on two-dimensional histogram modification. IEEE Access 7:83332–83342. https://doi.org/10.1109/ACCESS.2019.2921407

    Article  Google Scholar 

  36. Yao H, Qin C, Tang Z, Tian Y (2017) Improved dual-image reversible data hiding method using the selection strategy of shiftable pixels’ coordinates with minimum distortion. Signal Process 135:26–35. https://doi.org/10.1016/j.sigpro.2016.12.029

    Article  Google Scholar 

  37. Yao H, Qin C, Tang Z, Zhang X (2018) A general framework for shiftable position-based dual-image reversible data hiding. Eurasip J Image Vid Process 2018:. https://doi.org/10.1186/s13640-018-0281-y

  38. Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10:781–783. https://doi.org/10.1109/LCOMM.2006.060863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Thanikaiselvan.

Ethics declarations

This work was carried out by the authors at VIT University, Vellore, India. No other party was involved in the research and funding of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shastri, S., Thanikaiselvan, V. Interpolation based dual image reversible data hiding using trinary encoding. Multimed Tools Appl 83, 349–366 (2024). https://doi.org/10.1007/s11042-023-15574-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15574-9

Keywords

Navigation