Skip to main content
Log in

Medical images classification using deep learning: a survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Deep learning has made significant advancements in recent years. The technology is rapidly evolving and has been used in numerous automated applications with minimal loss. With these deep learning methods, medical image analysis for disease detection can be performed with minimal errors and losses. A survey of deep learning-based medical image classification is presented in this paper. As a result of their automatic feature representations, these methods have high accuracy and precision. This paper reviews various models like CNN, Transfer learning, Long short term memory, Generative adversarial networks, and Autoencoders and their combinations for various purposes in medical image classification. The total number of papers reviewed is 158. In the study, we discussed the advantages and limitations of the methods. A discussion is provided on the various applications of medical imaging, the available datasets for medical imaging, and the evaluation metrics. We also discuss the future trends in medical imaging using artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated during the current study. The datasets which used in this study their references are given in Table 7.

References

  1. Abadeh MS, Shahamat H (2020) Brain MRI analysis using a deep learning based evolutionary approach. Neural Netw 126:218–234. https://doi.org/10.1016/j.neunet.2020.03.017

    Google Scholar 

  2. Abdulkareem K et al (2022) Automated system for identifying COVID-19 Infections in computed tomography images using deep learning models. In: Journal of healthcare engineering 2022. https://doi.org/10.1155/2022/5329014

  3. Abdullah SM et al (2023) Deep transfer learning based parkinson’s disease detection using optimized feature selection. IEEE Access 11:3511–3524. https://doi.org/10.1109/ACCESS.2023.3233969

    Google Scholar 

  4. Abdulsahib A, Mahmoud M (2022) An Automated Image Segmentation and Useful Feature Extraction Algorithm for Retinal Blood Vessels in Fundus Images. Electronics 11:1295. https://doi.org/10.3390/electronics11091295

    Google Scholar 

  5. Abideen ZU, Ghafoor M, Munir K, Saqib M, Ullah A, Zia T, Tariq SA, Ahmed G, Zahra A (2020) Uncertainty assisted robust tuberculosis identification with bayesian convolutional neural networks. IEEE Access 8:22812–22825. IEEE

    Google Scholar 

  6. Al-Saffar ZA, Yildirim T (2020) A novel approach to improving brain image classification using mutual information-accelerated singular value decomposition. IEEE Access 8:52575–52587. https://doi.org/10.1109/ACCESS.2020.2980728

    Google Scholar 

  7. Allaouzi I, Ahmed BM (2019) A novel approach for multi-label chest x-ray classification of common thorax diseases. IEEE Access 7:64279–64288. https://doi.org/10.1109/ACCESS.2019.2916849

    Google Scholar 

  8. Alzubaidi LZ, Humaidi J (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8.53. https://doi.org/10.1186/s40537-021-00444-8

  9. Anitha V, Murugavalli S (2016) Brain tumour classification using two-tier classifier with adaptive segmentation technique. IET Comput Vis 10:9–17. https://doi.org/10.1049/iet-cvi.2014.0193

    Google Scholar 

  10. Ansingkar NP, Patil R, Deshmukh PD (2022) An efficient multi class Alzheimer detection using hybrid equilibrium optimizer with capsule auto encoder. Multimedia Tools and Applications, pp 1–32

  11. Arias-Garzón D et al (2021) COVID-19 detection in X-ray images using convolutional neural networks. Mach Learn Appl 6:100138. ISSN: 2666-8270. https://doi.org/10.1016/j.mlwa.2021.100138, https://www.sciencedirect.com/science/article/pii/S2666827021000694

    PubMed  PubMed Central  Google Scholar 

  12. Ashraf R et al (2020) Deep convolution neural network for big data medical image classification. IEEE Access 8:105659–105670. https://doi.org/10.1109/ACCESS.2020.2998808

    Google Scholar 

  13. Asifullah K et al (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53:5455–5516. ISSN: 1573-7462. https://doi.org/10.1007/s10462-020-09825-6

    Google Scholar 

  14. Baldi P (2011) Autoencoders, unsupervised learning and deep architectures. In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop - vol 27. UTLW’11. Washington, USA: JMLR.org, pp 37–50

  15. Bank D, Koenigstein N, Giryes R (2021) Autoencoders. arXiv:2003.05991[cs.LG.]

  16. Bian J et al (2021) Skin lesion classification by multi-view filtered transfer learning. IEEE Access 9:66052–66061. https://doi.org/10.1109/ACCESS.2021.3076533

    Google Scholar 

  17. Blood Cell Images (2018) https://www.kaggle.com/paultimothymooney/blood-cells

  18. Brain MRI Images for Brain Tumor Detection (2019) https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection

  19. Brain-Tumor-Progression (2021) https://wiki.cancerimagingarchive.net/display/Public/Brain-Tumor-Progression#g339481190e2ccc0d07d7455ab87b3ebb625adf48

  20. Brima Y, Tushar MHK, Kabir U, Islam T (2021) Deep transfer learning for brain magnetic resonance image multi-class classification. arXiv:2106.07333[cs.CV]

  21. COPD Machine Learning Datasets (2018) http://bigr.nl/research/projects/copd

  22. COVID-19 Radiography Dataset (2020) https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

  23. CT Images in COVID-19 (2021) https://wiki.cancerimagingarchive.net/display/Public/CT+Images+in+COVID-19

  24. Chai Y, Liu H, Xu J (2018) Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models. Knowl Based Syst 161:147–156. ISSN:0950-7051. https://doi.org/10.1016/j.knosys.2018.07.043, https://www.sciencedirect.com/science/article/pii/S0950705118303940

    Google Scholar 

  25. Charte D, Charte F, Garca S, del Jesus MJ, Herrera F (2018) A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines. Inf Fusion 44:78–96. ISSN: 1566-2535. https://doi.org/10.1016/j.inffus.2017.12.007, https://www.sciencedirect.com/science/article/pii/S1566253517307844.

    Google Scholar 

  26. Chest X-Ray Images (Pneumonia) (2018) https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.

  27. Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357[cs.CV]

  28. Chowdhary CL, Acharjya D (2016) A hybrid scheme for breast cancer detection using intuitionistic fuzzy rough set technique. Int J Healthc Inf Syst Inform 11.2:38–61. https://doi.org/10.4018/IJHISI.2016040103

    Google Scholar 

  29. Chowdhary CL, Acharjya D (2016) Breast cancer detection using intuitionistic fuzzy histogram hyperbolization and possibilitic fuzzy c-mean clustering algorithms with texture feature based classification on mammography images. In: Proceedings of the international conference on advances in information communication technology & computing. https://doi.org/10.1145/2979779.2979800

  30. Chowdhary CL, Acharjya D (2020) Segmentation and feature extraction in medical imaging: A systematic review. Procedia Comput Sci 167:26–36. https://doi.org/10.1016/j.procs.2020.03.179

    Google Scholar 

  31. DA Zebari, DA Ibrahim, HJ Mohammed (2022) Effective hybrid deep learning model for COVID-19 patterns identification using CT images. Expert Systems. https://doi.org/10.1111/exsy.13010

  32. DRIVE: Digital Retinal Images for Vessel Extraction (2012) https://drive.grand-challenge.org/

  33. Das V, Dandapat S, Bora PK (2020) A data-efficient approach for automated classification of oct images using generative adversarial network. IEEE Sens Lett 4(1):1–4. IEEE

    Google Scholar 

  34. Das PK, Meher S (2021) An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia. Expert Systems with Applications, pp 115311. ISSN: 0957-4174. https://doi.org/10.1016/j.eswa.2021.115311, https://www.sciencedirect.com/science/article/pii/S0957417421007405

  35. Das K et al (2020) Detection of breast cancer from whole slide histopathological images using deep multiple instance CNN. IEEE Access 8:213502–213511. https://doi.org/10.1109/ACCESS.2020.3040106

    Google Scholar 

  36. Das AK et al (2021) TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images. Chaos, Solitons Fractals 144:110713. ISSN: 0960–0779. https://doi.org/10.1016/j.chaos.2021.110713, https://www.sciencedirect.com/science/article/pii/S0960077921000667

    MathSciNet  PubMed  Google Scholar 

  37. De Moura J et al (2020) Deep convolutional approaches for the analysis of COVID-19 using chest X-Ray images from portable devices. IEEE Access 8:195594–195607. https://doi.org/10.1109/ACCESS.2020.3033762

    PubMed  Google Scholar 

  38. Demir F (2021) DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images. IEEE Access 103:107160. https://doi.org/10.1016/j.asoc.2021.107160

    Google Scholar 

  39. Diabetic Retinopathy Detection (2015) https://www.kaggle.com/c/diabeticretinopathy-detection

  40. Diakite J, Xiaping X (2021) Hyperspectral image classification using 3D 2D CNN. IET Image Proc 15:1083–1092. https://doi.org/10.1049/ipr2.12087

    Google Scholar 

  41. Elkorany AS, Elsharkawy ZF (2021) COVIDetection-Net: A tailored COVID-19 detection from chest radiography images using deep learning. Optik 231:166405. ISSN: 0030-4026. https://doi.org/10.1016/j.ijleo.2021.166405, https://www.sciencedirect.com/science/article/pii/S0030402621001388

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elmannai H, Hamdi M, AlGarni A (2021) Deep learning models combining for breast cancer histopathology image classification. Int J Comput Intell Syst 14(1):1003. Atlantis Press BV

    Google Scholar 

  43. Fradi M, Khriji L, Machhout M (2022) Real-time arrhythmia heart disease detection system using CNN architecture based various optimizers-networks. Multimed Tools Appl 81.29:41711–41732

    Google Scholar 

  44. Frid-Adar M et al (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331. ISSN: 0925-2312. https://doi.org/10.1016/j.neucom.2018.09.013, https://www.sciencedirect.com/science/article/pii/S0925231218310749

    Google Scholar 

  45. Gao Y, Wang R et al, Shi Y (2013) Transductive cost-sensitive lung cancer image classification. Appl Intell springer 38:16–28. https://doi.org/10.1007/s10489-012-0354-z

  46. García-Ordás MT et al (2020) Detecting respiratory pathologies using convolutional neural networks and variational autoencoders for unbalancing data. Sensors 20.4. ISSN: 1424-8220. https://doi.org/10.3390/s20041214, https://www.mdpi.com/1424-8220/20/4/1214

  47. Garg NK, Chhabra P, Kumar M (2018) Content-based image retrieval system using ORB and SIFT features. Neural Comput Appl 32:2725–2733

    Google Scholar 

  48. Goodfellow IJ et al (2014) Generative adversarial networks. arXiv:1406.2661[stat.ML]

  49. Greg VH, Carlos M, Gonzalo N (2020) A review on the long short-term memory model. Artif Intell Rev 53:5929–5955. ISSN: 1573–7462. https://doi.org/10.1007/s10462-020-09838-1

    Google Scholar 

  50. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang L, Wang G, Cai J, Chen T (2017) Recent advances in convolutional neural networks. arXiv:1512.07108[cs.CV]

  51. Hasan MM et al (2023) Review on the evaluation and development of artificial intelligence for COVID-19 containment. Sensors 23.1:527

    ADS  Google Scholar 

  52. He X, Fang L, Rabbani H, Chen X, Liu Z (2020) Retinal optical coherence tomography image classification with label smoothing generative adversarial network. Neurocomputing 405:37–47. ISSN: 0925-2312. https://doi.org/10.1016/j.neucom.2020.04.044, https://www.sciencedirect.com/science/article/pii/S0925231220306111

    Google Scholar 

  53. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385[ cs.CV]

  54. Heart Dieses Data Set (1988) http://archive.ics.uci.edu/ml/datasets/Heart+Disease

  55. Hemanth DJ et al (2019) A modified deep convolutional neural network for abnormal brain image classification. IEEE Access 7:4275–4283. https://doi.org/10.1109/ACCESS.2018.2885639

    Google Scholar 

  56. Histology Image Collection Library (1988) https://medisp.bme.uniwa.gr/hicl/index.html

  57. Howard AG et al (2017) MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861[cs.CV]

  58. Liao F, Chen X, Hu X, Song S (2017) Estimation of the volume of the left ventricle from MRI images using deep neural networks. IEEE Trans Cybern 49(2):495–504. IEEE

    PubMed  Google Scholar 

  59. Hu J et al (2019) Squeeze-and-excitation networks. arXiv:709.01507[cs.CV]

  60. Hu S et al (2020) Weakly supervised deep learning for COVID-19 infection detection and classification from CT images. IEEE Access 8:118869–118883. https://doi.org/10.1109/ACCESS.2020.3005510

    Google Scholar 

  61. Hu Z-P, Zhang R-X, Qiu Y, Zhao M-Y, Sun Z (2021) 3D convolutional networks with multi-layer-pooling selection fusion for video classification. Multimed Tools Appl 80:33179–33192. Springer

    Google Scholar 

  62. Huang G et al (2018) Densely connected convolutional networks. arXiv:1608.06993[cs.CV]

  63. Huang L, Fang L, Rabbani H, Chen X (2019) Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network. IEEE Signal Process Lett 26.7:1026–1030. https://doi.org/10.1109/LSP.2019.2917779

    ADS  Google Scholar 

  64. Huang Q et al (2020) Blood cell classification based on hyperspectral imaging with modulated Gabor and CNN. IEEE J Biomed Health Inf 24.1:160–170. https://doi.org/10.1109/JBHI.2019.2905623

    Google Scholar 

  65. Huang X et al (2020) Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on CT images. Knowl-Based Syst 204:106230. ISSN: 0950-7051. https://doi.org/10.1016/j.knosys.2020.106230, https://www.sciencedirect.com/science/article/pii/S0950705120304378

    Google Scholar 

  66. Hussain E et al (2020) A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network. Tissue Cell 65:101347. ISSN: 0040-8166. https://doi.org/10.1016/j.tice.2020.101347, https://www.sciencedirect.com/science/article/pii/S0040816619304872

    PubMed  Google Scholar 

  67. Hussain SM et al (2022) Deep learning based image processing for robot assisted surgery: a systematic literature survey. IEEE Access 10:122627–122657. https://doi.org/10.1109/ACCESS.2022.3223704

    Google Scholar 

  68. Indian Diabetic Retinopathy Image Dataset (IDRID) (2019) https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-datasetidrid

  69. Indolia S et al (2018) Conceptual understanding of convolutional neural network- a deep learning approach. Procedia Comput Sci 132:679–688. ISSN: 1877-0509. https://doi.org/10.1016/j.procs.2018.05.069, https://www.sciencedirect.com/science/article/pii/S1877050918308019

    Google Scholar 

  70. Inthiyaz S et al (2023) Skin disease detection using deep learning. Adv Eng Softw 175:103361

    Google Scholar 

  71. Jammula R, Tejus VR, Shankar S (2020) Optimal transfer learning model for binary classification of funduscopic images through simple heuristics. arXiv:2002.04189[cs.LG]

  72. Jun TJ et al (2021) TRk-CNN: Transferable ranking-CNN for image classification of glaucoma, glaucoma suspect, and normal eyes. Exp Syst Appl 182:115211. ISSN: 0957–4174. https://doi.org/10.1016/j.eswa.2021.115211, https://www.sciencedirect.com/science/article/pii/S0957417421006448

    Google Scholar 

  73. Khan NM, Abraham N, Hon M (2019) Transfer learning with intelligent training data selection for prediction of alzheimer’s disease. IEEE Access 7:72726–72735. https://doi.org/10.1109/ACCESS.2019.2920448

    Google Scholar 

  74. Khan MA, Muhammad K, Sharif M, Akram T, de Albuquerque VHC (2021) Multi-class skin lesion detection and classification via teledermatology. IEEE J Biomed Health Inf 25(12):4267–4275. IEEE

    Google Scholar 

  75. Kim S-H, Koh HM, Lee B-D (2021) Classification of colorectal cancer in histological images using deep neural networks: An investigation. Multimed Tools Appl 80.28:35941–35953

    Google Scholar 

  76. Kozegar E, Soryani M, Behnam H, Salamati M, Tan T (2020) Computer aided detection in automated 3-D breast ultrasound images: a survey. Artif Intell Rev 53:1919–1941. Springer

    Google Scholar 

  77. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet Classification with deep convolutional neural networks. In: Proceedings of the 25th International conference on neural information processing systems - vol 1. NIPS’12. Lake Tahoe, Nevada: Curran Associates Inc., pp 1097–1105

  78. Kuang Y, Lan T, Peng X, Selasi GE, Liu Q, Zhang J (2020) Unsupervised multi-discriminator generative adversarial network for lung nodule malignancy classification. IEEE Access 8:77725–77734. https://doi.org/10.1109/ACCESS.2020.2987961

    Google Scholar 

  79. Kumar M, Bansal M, Sachdeva M (2021) Transfer learning for image classification using VGG19: Caltech-101 image data set. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-021-03488-z

  80. Kumar D et al (2020) Automatic detection of white blood cancer from bone marrow microscopic images using convolutional neural networks. IEEE Access 8:142521–142531. https://doi.org/10.1109/ACCESS.2020.3012292

    Google Scholar 

  81. Labhsetwar SR et al (2020) Predictive analysis of diabetic retinopathy with transfer learning. arXiv:2011.04052[cs.CV]

  82. Lecun Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86.11:2278–2324. https://doi.org/10.1109/5.726791

    Google Scholar 

  83. Li Z, Zhou D, Wan L, Li J, Mou W (2020) Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. J Electrocardiol 58:105–112. ISSN: 0022-0736. https://doi.org/10.1016/j.jelectrocard.2019.11.046, https://www.sciencedirect.com/science/article/pii/S0022073619304170

    PubMed  Google Scholar 

  84. Li C et al (2021) Transfer learning for establishment of recognition of COVID-19 on CT imaging using small-sized training datasets. Knowl-Based Syst 218:106849. ISSN: 0950-7051. https://doi.org/10.1016/j.knosys.2021.106849, https://www.sciencedirect.com/science/article/pii/S095070512100112X

    PubMed  PubMed Central  Google Scholar 

  85. Liang D, Sun L, Ma W, Paisley J (2020) A 3D spatially weighted network for segmentation of brain tissue from MRI. IEEE Trans Med Imaging 39:898–909. https://doi.org/10.1109/TMI.2019.2937271

    PubMed  Google Scholar 

  86. Liang G et al (2018) Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 6:36188–36197. https://doi.org/10.1109/ACCESS.2018.2846685

    Google Scholar 

  87. Liu H, Huang KK, Ren CX, Lai ZR (2021) Hyperspectral image classification via discriminative convolutional neural network with an improved triplet loss. Pattern Recognition 112. https://doi.org/10.1016/j.patcog.2020.107744

  88. Liu Y, Wang W (2015) Simultaneous image fusion and denoising with adaptive sparse representation. IET Image Proc 9:347–357. https://doi.org/10.1049/iet-ipr.2014.0311

    Google Scholar 

  89. Liu X-J et al (2022) Few-shot learning for skin lesion image classification. Multimedia Tools and Applications, pp 1–12

  90. Ma Y, Niu D, Zhang J et al (2021) Unsupervised deformable image registration network for 3D medical images. Applied Intelligence springer. https://doi.org/10.1007/s10489-021-02196-7

  91. Mahmoudi R, Benameur N, Mabrouk R (2022) A Deep Learning-Based Diagnosis System for COVID-19 Detection and Pneumonia Screening Using CT Imaging. Appl Sci 12:4825. https://doi.org/10.3390/app12104825

    CAS  Google Scholar 

  92. Mallick PK et al (2019) Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access 7:46278–46287. https://doi.org/10.1109/ACCESS.2019.2902252

    Google Scholar 

  93. Mamalakis M et al (2021) DenResCov-19: A deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays. arXiv:2104.04006[eess.IV]

  94. Martín EX, Velasco M, Angulo C et al (2014) LTI ODE-valued neural networks. Appl Intell Springer 41:594–605. https://doi.org/10.1007/s10489-014-0548-7

    Google Scholar 

  95. Martinez AR (2020) Classification of COVID-19 in CT scans using multi-source transfer learning

  96. Masoudi S et al (2021) Deep Learning Based Staging of Bone Lesions From Computed Tomography Scans. IEEE Access 9:87531–87542. https://doi.org/10.1109/ACCESS.2021.3074051

    PubMed  PubMed Central  Google Scholar 

  97. Mehmood S et al (2022) Malignancy detection in lung and colon histopathology images using transfer learning with class selective image processing. IEEE Access 10:25657–25668. https://doi.org/10.1109/ACCESS.2022.3150924

    Google Scholar 

  98. Melanoma Cancer Cell Dataset (2020) https://sites.google.com/view/virginiafernandes/datasets/melanoma-cancer-cell-dataset.

  99. Meng D et al (2017) Liver fibrosis classification based on transfer learning and FCNet for ultrasound images. IEEE Access 5:5804–5810. https://doi.org/10.1109/ACCESS.2017.2689058

    Google Scholar 

  100. Meng N et al (2019) Large-scale multi-class image-based cell classification with deep learning. IEEE J Biomed Inform 23.5:2091–2098. https://doi.org/10.1109/JBHI.2018.2878878

    Google Scholar 

  101. Mercioni M-A, Stavarache LL (2022) Disease diagnosis with medical imaging using deep learning. In: Advances in information and communication: proceedings of the 2022 future of information and communication conference (FICC), vol 2. Springer, pp 198–208

  102. Mijwil MM (2021) Skin cancer disease images classification using deep learning solutions. Multimed Tools Appl 80.17:26255–26271

    Google Scholar 

  103. Motamed S, Rogalla P, Khalvati F (2020) RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray. arXiv:2010.06418[eess.IV]

  104. Moslehi S, Mahjub H, Farhadian M, Soltanian AR, Mamani M (2022) Interpretable generalized neural additive models for mortality prediction of COVID-19 hospitalized patients in Hamadan, Iran. BMC Med Res Methodol 22 (1):339. Springer

    PubMed  PubMed Central  Google Scholar 

  105. Mousavi Z et al (2022) COVID-19 detection using chest X-ray images based on a developed deep neural network. SLAS Technology 27.1:63–75. ISSN: 2472-6303. https://doi.org/10.1016/j.slast.2021.10.011, https://www.sciencedirect.com/science/article/pii/S247263032100011X

    Google Scholar 

  106. Muhammad G, Shamim Hossain M (2021) COVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound images. Inf Fusion 72:80–88. ISSN: 1566-2535. https://doi.org/10.1016/j.inffus.2021.02.013, https://www.sciencedirect.com/science/article/pii/S1566253521000361

    PubMed  PubMed Central  Google Scholar 

  107. NIH Chest X-ray Dataset (2018) https://www.kaggle.com/nih-chest-xrays/data

  108. NIH DeepLesion dataset (2018) https://www.kaggle.com/kmader/nih-deeplesion-subset.

  109. Nascimento JC, Carneiro G (2013) Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data. IEEE Trans Pattern Anal Mach Intell 35.11:2592. https://doi.org/10.1109/TPAMI.2013.96

    Google Scholar 

  110. Nascimento JC, Carneiro G, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21.3:968–982. https://doi.org/10.1109/TIP.2011.2169273

    ADS  MathSciNet  Google Scholar 

  111. Nasir Khan H et al (2019) Multi-view feature fusion based four views model for mammogram classification using convolutional neural network. IEEE Access 7:165724–165733. https://doi.org/10.1109/ACCESS.2019.2953318

    Google Scholar 

  112. Nigam B et al (2021) COVID-19: Automatic detection from X-ray images by utilizing deep learning methods. Exp Syst Appl 176:114883. ISSN: 0957-4174. https://doi.org/10.1016/j.eswa.2021.114883, https://www.sciencedirect.com/science/article/pii/S0957417421003249

    Google Scholar 

  113. Noreen N et al (2020) A deep learning model based on concatenation approach for the diagnosis of brain tumor. IEEE Access 8:55135–55144. https://doi.org/10.1109/ACCESS.2020.2978629

    Google Scholar 

  114. Pantrigo JJ, Nunez JC, Cabido R, Montemayor AS (2018) Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition. Pattern Recognit 76:80–94. https://doi.org/10.1016/j.patcog.2017.10.033

    ADS  Google Scholar 

  115. Peng Y, Zhu H, Han G, Zhao H (2021) Functional-realistic CT image super-resolution for early-stage pulmonary nodule detection. Future Gener Comput Syst 115:475–485. https://doi.org/10.1016/j.future.2020.09.020

    Google Scholar 

  116. Petrick N, Pezeshk A, Hamidian S, Sahiner B (2019) 3-D convolutional neural networks for automatic detection of pulmonary nodules in chest CT. In: IEEE Journal of biomedical and health informatics 23, pp 2080–2090. https://doi.org/10.1109/JBHI.2018.2879449

  117. Poloni KM et al (2021) Brain MR image classification for Alzheimer’s disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-Gabor filter responses. Neurocomputing 419:126–135. ISSN: 0925-2312. https://doi.org/10.1016/j.neucom.2020.07.102, https://www.sciencedirect.com/science/article/pii/S0925231220312972

    Google Scholar 

  118. Pulgar FJ, Charte F, Rivera AJ, del Jesus MJ (2020) Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines. Inf Fusion 54:44–60. ISSN: 1566-2535. https://doi.org/10.1016/j.inffus.2019.07.004, https://www.sciencedirect.com/science/article/pii/S1566253519300880.

    Google Scholar 

  119. Qureshi I, Shaheed K, Mao A, Zhang X (2022) Finger-vein presentation attack detection using depthwise separable convolution neural network. Expert Systems with Applications 198. https://doi.org/10.1016/j.eswa.2022.116786

  120. Rahman T, Khandakar A, Kadir MA, Islam KR, Islam KF, Mazhar R, Hamid T, Islam MT, Kashem S, Mahbub ZB et al (2020) Reliable tuberculosis detection using chest X-Ray with deep learning, segmentation and visualization. IEEE Access 8:191586–191601. IEEE

    Google Scholar 

  121. Raj A, Shah NA, Tiwari AK, Martini MG (2020) Multivariate regression-based convolutional neural network model for fundus image quality assessment. IEEE Access 8:57810–57821. https://doi.org/10.1109/ACCESS.2020.2982588

    Google Scholar 

  122. Rajaraman S, Antani SK (2020) Modality-specific deep learning model ensembles toward improving tb detection in chest radiographs. IEEE Access 8:27318–27326. https://doi.org/10.1109/ACCESS.2020.2971257

    PubMed  PubMed Central  Google Scholar 

  123. Reshi AA, Rustam F, Mehmood A, Alhossan A, Alrabiah Z, Ahmad A, Alsuwailem H, Choi GS (2021) An efficient CNN model for COVID-19 disease detection based on X-ray image classification. Complexity 2021:1–12. Hindawi Limited

    Google Scholar 

  124. Retinal OCT Images (optical coherence tomography) (2018) https://www.kaggle.com/paultimothy,mooney/kermany2018.

  125. Rong Y et al (2019) surrogate-assisted retinal OCT image classification based on convolutional neural networks. IEEE J Biomed Health Inf 23.1:253–263. https://doi.org/10.1109/JBHI.2018.2795545

    Google Scholar 

  126. Russell RL, Ozdemir O, Berlin AA (2020) A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans. IEEE Trans Med Imaging 39:1419–1429. https://doi.org/10.1109/TMI.2019.2947595

    PubMed  Google Scholar 

  127. SJS Gardezi, Elazab A, Wang C, Bai H (2020) GP-GAN: Brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images. Neural Netw 132:321–332. https://doi.org/10.1016/j.neunet.2020.09.004

    Google Scholar 

  128. Saha S, Sheikh N (2021) Ultrasound image classification using ACGAN with small training dataset. arXiv:2102.01539[eess.IV]

  129. Sakib S et al, Fouda MM, Fadlullah ZM, Guizani M (2020) DL-CRC: Deep learning-based chest radiograph classification for COVID-19 detection: A novel approach. IEEE Access 8:171575–171589. https://doi.org/10.1109/ACCESS.2020.3025010

  130. Salama WM, Shokry A, Aly MH (2022) A generalized framework for lung cancer classification based on deep generative models. Multimed Tools Applic 81(23):32705–32722. Springer

    Google Scholar 

  131. Salehinejad H et al (2019) Synthesizing chest X-Ray pathology for training deep convolutional neural networks. IEEE Trans Med Imaging 38.5:1197–1206. https://doi.org/10.1109/TMI.2018.2881415

    Google Scholar 

  132. Saxena A, Singh SP (2022) A deep learning approach for the detection of COVID-19 from chest X-Ray images using convolutional neural networks. https://europepmc.org/article/PPR/PPR454232

  133. Schmid V, Meyer-Baese A (2014) Pattern recognition and signal analysis in medical imaging, 2nd edn. Academic Press, Cambridge, pp 1–20. https://doi.org/10.1016/B978-0-12-409545-8.00001-7

    Google Scholar 

  134. Shamim S et al (2022) Automatic COVID-19 lung infection segmentation through modified Unet model. J Healthcare Eng 2022:6566982. https://doi.org/10.1155/2022/6566982

    Google Scholar 

  135. Sherstinsky A (2020) Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys D: Nonlinear Phenom 404:132306. ISSN: 0167-2789. https://doi.org/10.1016/j.physd.2019.132306

    MathSciNet  Google Scholar 

  136. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556[cs.CV]

  137. Singh S, Tripathi B (2022) Pneumonia classification using quaternion deep learning. Multimed Tools Appl 81.2:1743–1764

    Google Scholar 

  138. Skin Cancer MNIST: HAM10000 (2018) https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000

  139. Soomro TA (2021) Artificial intelligence (AI) for medical imaging to combat coronavirus disease (COVID-19): a detailed review with direction for future research. Artificial Intelligence Review. ISSN: 1573-7462. https://doi.org/10.1007/s10462-021-09985-z

  140. Sudharshan PJ et al (2019) Multiple instance learning for histopathological breast cancer image classification. Exp Syst Appl 117:103–111. ISSN: 0957-4174. https://doi.org/10.1016/j.eswa.2018.09.049, https://www.sciencedirect.com/science/article/pii/S0957417418306262

    Google Scholar 

  141. Sultan HH, Salem NM, Al-Atabany W (2019) Multi-classification of brain tumor images using deep neural network. IEEE Access 7:69215–69225. https://doi.org/10.1109/ACCESS.2019.2919122

    Google Scholar 

  142. Sun G, Wang X, Xu L, Li C, Wang W, Yi Z, Luo H, Su Y, Zheng J, Li Z et al (2023) Deep learning for the detection of multiple fundus diseases using ultra-widefield images. Ophthalmol Therapy 12(2):895–907. Springer

    Google Scholar 

  143. Suresh S, Mohan S (2019) NROI based feature learning for automated tumor stage classification of pulmonary lung nodules using deep convolutional neural networks. Journal of King Saud University - Computer and Information Sciences. ISSN: 1319-1578. https://doi.org/10.1016/j.jksuci.2019.11.013, https://www.sciencedirect.com/science/article/pii/S131915781931420X.

  144. Szegedy C et al (2014) Going deeper with convolutions. arXiv:1409.4842[cs.CV]

  145. Szegedy C et al (2015) Rethinking the inception architecture for computer vision, arXiv:1512.00567[cs.CV]

  146. Szegedy C et al (2016) Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261[cs.CV]

  147. The Cavy dataset (2016) http://www.inf-cv.uni-jena.de/Research/Datasets/Cavy+Dataset.html.

  148. Ting FF, Tan YJ, Sim KS (2019) Convolutional neural network improvement for breast cancer classification. Exp Syst Appl 120:103–115. ISSN: 0957-4174. https://doi.org/10.1016/j.eswa.2018.11.008, https://www.sciencedirect.com/science/article/pii/S0957417418307280

    Google Scholar 

  149. Trivizakis E et al (2019) Extending 2-D convolutional neural networks to 3-D for advancing deep learning cancer classification with application to MRI liver tumor differentiation. IEEE J Biomed Health Inf 23.3:923–930. https://doi.org/10.1109/JBHI.2018.2886276

    Google Scholar 

  150. Tuberculosis (TB) Chest X-ray Database. 8.2 (2021) https://www.kaggle.com/tawsifurrahman/tuberculosis-tb-chest-xray-dataset

  151. Turkoglu M (2021) COVID-19 detection system using chest CT images and multiple kernels-extreme learning machine based on deep neural network. IRBM. ISSN: 1959-0318. https://doi.org/10.1016/j.irbm.2021.01.004, https://www.sciencedirect.com/science/article/pii/S1959031821000051

  152. Vairamuthu S, Navaneethakrishnan M, Parthasarathy G (2021) Atom search-Jaya-based deep recurrent neural network for liver cancer detection. IET Image Proc 15:337–349. https://doi.org/10.1049/ipr2.12019

    Google Scholar 

  153. van Grinsven MJJP, van Ginneken B et al (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284. https://doi.org/10.1109/TMI.2016.2526689

    PubMed  Google Scholar 

  154. Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR (2020) Covidgan: data augmentation using auxiliary classifier gan for improved covid-19 detection. IEEE Access 8:91916–91923. IEEE

    PubMed  Google Scholar 

  155. Wang J (2020) OCT image recognition of cardiovascular vulnerable plaque based on CNN. IEEE Access 8:140767–140776. https://doi.org/10.1109/ACCESS.2020.3007599

    Google Scholar 

  156. Wang SW, Guo B, Y et al (2020) Twin labeled LDA: a supervised topic model for document classification. Appl Intell Springer 50:4602–4615. https://doi.org/10.1007/s10489-020-01798-x

    Google Scholar 

  157. Wang Q, Li Y, Wang Y, Ren J (2022) An automatic algorithm for software vulnerability classification based on CNN and GRU. Multimedia Tools and Applications, pp 1–22

  158. Wang M, Jiang M (2019) Deep residual refining based pseudo-multi-frame network for effective single image super-resolution. IET Image Process 13:591–599. https://doi.org/10.1049/iet-ipr.2018.6057

    Google Scholar 

  159. Wang D, Wang L (2019) On OCT Image Classification via Deep Learning. IEEE Photonics J 11.5:1–14. https://doi.org/10.1109/JPHOT.2019.2934484

    MathSciNet  Google Scholar 

  160. Wang Z et al (2019) Dilated 3D Convolutional neural networks for brain MRI data classification. IEEE Access 7:134388–134398. https://doi.org/10.1109/ACCESS.2019.2941912

    Google Scholar 

  161. Wang C et al (2019) Pulmonary image classification based on inception-v3 transfer learning model. IEEE Access 7:146533–146541. https://doi.org/10.1109/ACCESS.2019.2946000

    Google Scholar 

  162. Wang C et al (2019) Pulmonary image classification based on inception-v3 transfer learning model. IEEE Access 7:146533–146541. https://doi.org/10.1109/ACCESS.2019.2946000

    Google Scholar 

  163. Wang Y et al (2020) An optimized deep convolutional neural network for dendrobium classification based on electronic nose. Sens Actuator A Phys 307:111874. ISSN: 0924-4247. https://doi.org/10.1016/j.sna.2020.111874, https://www.sciencedirect.com/science/article/pii/S0924424719303954

    ADS  CAS  Google Scholar 

  164. Wang S-H et al (2021) Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Inf Fusion 67:208–229. ISSN:1566-2535. https://doi.org/10.1016/j.inffus.2020.10.004, https://www.sciencedirect.com/science/article/pii/S1566253520303705

    PubMed  Google Scholar 

  165. Wisconsin Breast Cancer Database (1992) https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29

  166. Wu J, Li Y, Wu Q (2019) Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning. IEEE Access 7:21400–21408. https://doi.org/10.1109/ACCESS.2019.2898044

    Google Scholar 

  167. Wu Y, Yi Z (2020) Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks. Knowl-Based Syst 200:105873. ISSN: 0950-7051. https://doi.org/10.1016/j.knosys.2020.105873, https://www.sciencedirect.com/science/article/pii/S0950705120302306

    Google Scholar 

  168. Xie L, Zhang L, Hu T, Huang H, Yi Z (2020) Neural networks model based on an automated multi-scale method for mammogram classification. Knowl-Based Syst 208:106465. Elsevier

    Google Scholar 

  169. Xie Y et al (2019) Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Trans Med Imaging 38.4:991–1004. https://doi.org/10.1109/TMI.2018.2876510

    Google Scholar 

  170. Xu Y, Lam H-K, Jia G (2021) MANet: A two-stage deep learning method for classification of COVID-19 from Chest X-ray images. Neurocomputing 443:96–105. ISSN: 0925-2312. https://doi.org/10.1016/j.neucom.2021.03.034, https://www.sciencedirect.com/science/article/pii/S0925231221004021

    PubMed  PubMed Central  Google Scholar 

  171. Xu J et al (2016) Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans Med Imaging 35.1:119–130. https://doi.org/10.1109/TMI.2015.2458702

    Google Scholar 

  172. Xu S et al (2020) Cxnet-M3: A Deep quintuplet network for multi-lesion classification in chest X-Ray images via multi-label supervision. IEEE Access 8:98693–98704. https://doi.org/10.1109/ACCESS.2020.2996217

    Google Scholar 

  173. Yang Z et al (2019) EMS-Net: Ensemble of multiscale convolutional neural networks for classification of breast cancer histology images. Neurocomputing 366:46–53. ISSN: 0925-2312. https://doi.org/10.1016/j.neucom.2019.07.080, https://www.sciencedirect.com/science/article/pii/S0925231219310872

    Google Scholar 

  174. Yang X et al (2019) A two-stage convolutional neural network for pulmonary embolism detection from CTPA images. IEEE Access 7:84849–84857. https://doi.org/10.1109/ACCESS.2019.2925210

    Google Scholar 

  175. Yao R, Fan Y, Liu J, Yuan X (2021) COVID-19 detection from X-ray images using multi-kernel-size spatial-channel attention network. Pattern Recognit 119. https://doi.org/10.1016/j.patcog.2021.108055

  176. Yu S et al (2021) Automatic classification of cervical cells using deep learning method. IEEE Access 9:32559–32568. https://doi.org/10.1109/ACCESS.2021.3060447

    Google Scholar 

  177. Zagoruyko S, Komodakis N (2017) Wide residual networks. arXiv:1605.07146[cs.CV]

  178. Zeiler MD, Fergus R (2013) Visualizing and Understanding Convolutional Networks. arXiv:1311.2901[cs.CV]

  179. Zeimarani B et al (2020) Breast lesion classification in ultrasound images using deep convolutional neural network. IEEE Access 8:133349–133359. https://doi.org/10.1109/ACCESS.2020.3010863

    Google Scholar 

  180. Zhang L et al (2017) DeepPap: Deep convolutional networks for cervical cell classification. IEEE J Biomed Health Inf 21.6:1633–1643. https://doi.org/10.1109/JBHI.2017.2705583

    Google Scholar 

  181. Zhao C et al (2021) Dermoscopy image classification based on StyleGAN and DenseNet201. IEEE Access 9:8659–8679. https://doi.org/10.1109/ACCESS.2021.3049600

    Google Scholar 

  182. Zhao X et al (2022) Automatic thyroid ultrasound image classification using feature fusion network. IEEE Access 10:27917–27924. https://doi.org/10.1109/ACCESS.2022.3156096

    Google Scholar 

  183. Zhou L, Gu X (2020) Embedding topological features into convolutional neural network salient object detection. Neural Netw 121:308–318. https://doi.org/10.1016/j.neunet.2019.09.009.

    PubMed  Google Scholar 

  184. Zhou Q, Zhang J, Han G, Ruan Z, Wei Y (2022) Enhanced self-supervised GANs with blend ratio classification. Multimedia Tools and Applications, pp 1–17

  185. Zhou L et al (2020) Transfer learning-based DCE-MRI method for identifying differentiation between benign and malignant breast tumors. IEEE Access 8:17527–17534. https://doi.org/10.1109/ACCESS.2020.2967820

    Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Sharma.

Ethics declarations

Conflict of Interests

The authors declare that they have no confict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumbharkar, P., Vanam, S. et al. Medical images classification using deep learning: a survey. Multimed Tools Appl 83, 19683–19728 (2024). https://doi.org/10.1007/s11042-023-15576-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15576-7

Keywords

Navigation