Skip to main content
Log in

Resource Management approaches to Internet of Vehicles

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The Internet of Vehicles (IoV) has become a significant issue in designing smart cities. Many applications and services are provided in IoV for various purposes. They need the resources for the computation and data collection. One of the open issues in IoV is resource management because of resource limitation, resource heterogeneity, and dynamic networks. To our knowledge, no systematic and thorough research in resource management methodologies was conducted in IoV, despite the critical nature of resource management challenges. This paper analyzes the recently published studies on resource management in IoV. Our analysis shows that resource allocation has the most utilization rate of resource management approaches at 30%. The most critical parameter in resource allocation is cost, which includes energy, time, price, and processing capacity. The analytical reports show those cost parameters have the most evaluation in the approaches by 19%. Furthermore, we propose a taxonomy for resource management in IoV and extract challenges and open issues in this field. It can be a start point to suggest new methods for resource management in IoV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable'

References

  1. Aazam M, Zeadally S, Harras KA (2018) Deploying fog computing in the industrial internet of things and industry 4.0. IEEE Trans Industr Inf 14(10):4674–4682

    Google Scholar 

  2. Abbas A, Krichen M, Alroobaea R, Malebary S, Tariq U, JalilPiran M (2021) An opportunistic data dissemination for autonomous vehicles communication.". Soft Comput 25(18):11899–11912

    Google Scholar 

  3. Abbasi S, Rahmani AM, Balador A, Sahafi A (2021) Internet of Vehicles: Architecture, services, and applications. Int J Commun Syst 34(10):e4793

    Google Scholar 

  4. Alioua A, Senouci S-M, Sedjelmaci H, Moussaoui S (2019) Incentive edge caching in software-defined internet of vehicles: A Stackelberg game approach. Int J Commun Syst 32(17):e3787

    Google Scholar 

  5. Al-Surmi I, Raddwan B, Al-Baltah I (2021) Next Generation Mobile Core Resource Orchestration: Comprehensive Survey, Challenges and Perspectives. Wireless Pers Commun 120(2):1341–1415

    Google Scholar 

  6. Ameen HA, Zaidan BB, Zaidan AA, Saon S, Nor DM, Malik RQ, Kareem ZH, Garfan S, Zaidan RA, Mohammed A (2019) A deep review and analysis of data exchange in vehicle-to-vehicle communications systems: coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directions. IEEE Access 7:158349–158378

    Google Scholar 

  7. Chen X, Thomas N, Zhan T, Ding J (2019) A hybrid task scheduling scheme for heterogeneous vehicular edge systems. IEEE Access 7:117088–117099

    Google Scholar 

  8. Cheng J, Guan D (2021) Research on task-offloading decision mechanism in mobile edge computing-based Internet of Vehicle. EURASIP J Wirel Commun Netw 2021(1):1–14

    Google Scholar 

  9. Fourati H, Maaloul R, Chaari L (2021) A survey of 5G network systems: challenges and machine learning approaches. Int J Mach Learn Cybern 12(2):385–431

    Google Scholar 

  10. Ghobaei-Arani M, Souri A, Rahmanian AA (2020) Resource management approaches in fog computing: a comprehensive review. J Grid Comput 18(1):1–42

    Google Scholar 

  11. Gu X, Ding Yi (2018) A dynamic geo-based resource selection algorithm for LTE-V2V communications. EURASIP J Wirel Commun Netw 2018(1):1–18

    MathSciNet  Google Scholar 

  12. Gu X, Zhang G (2021) Energy-efficient computation offloading for vehicular edge computing networks. Comput Commun 166:244–253

    Google Scholar 

  13. He X, Haodong Lu, Miao Du, Mao Y, Wang K (2020) QoE-based task offloading with deep reinforcement learning in edge-enabled Internet of Vehicles. IEEE Trans Intell Transp Syst 22(4):2252–2261

    Google Scholar 

  14. Hong C-H, Varghese B (2019) Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms. ACM Comput Surveys (CSUR) 52(5):1–37

    Google Scholar 

  15. Hou X, Ren Z, Wang J, Cheng W, Ren Y, Chen K-C, Zhang H (2020) Reliable computation offloading for edge-computing-enabled software-defined IoV. IEEE Internet Things J 7(8):7097–7111

    Google Scholar 

  16. Hu F, Lv L, Zhang TongLiang, Shi Y (2021) Vehicular task scheduling strategy with resource matching computing in cloud-edge collaboration. IET Collab Intell Manuf 3(4):334–344

    Google Scholar 

  17. Huang X, Ke Xu, Lai C, Chen Q, Zhang J (2020) Energy-efficient offloading decision-making for mobile edge computing in vehicular networks. EURASIP J Wirel Commun Netw 2020(1):1–16

    Google Scholar 

  18. Ji H, Alfarraj O, Tolba A (2020) Artificial intelligence-empowered edge of vehicles: architecture, enabling technologies, and applications. IEEE Access 8:61020–61034

    Google Scholar 

  19. Kadhim AJ, Seno SA (2018) Maximizing the utilization of fog computing in internet of vehicle using SDN. IEEE Commun Lett 23(1):140–143

    Google Scholar 

  20. Kanmani M, Narasimhan V (2018) Swarm intelligent based contrast enhancement algorithm with improved visual perception for color images. Multimedia Tools Applic 77(10):12701–12724

    Google Scholar 

  21. Kaviarasan R, Harikrishna P (2021) Localizing non-line-of-sight nodes in Vehicluar Adhoc Networks using gray wolf methodology. Int J Commun Syst 34(1):e4642

    Google Scholar 

  22. Khadir AA, Seno SA (2021) SDN-based offloading policy to reduce the delay in fog-vehicular networks. Peer-to-Peer Netw Applic 14(3):1261–1275

    Google Scholar 

  23. Kim T, Min H, Choi E, Jung J (2020) Optimal job partitioning and allocation for vehicular cloud computing. Futur Gener Comput Syst 108:82–96

    Google Scholar 

  24. Lee S-S, Lee SuKyoung (2020) Resource allocation for vehicular fog computing using reinforcement learning combined with heuristic information. IEEE Internet Things J 7(10):10450–10464

    Google Scholar 

  25. Lee Y, Jeong S, Masood A, Park L, Dao N-N, Cho S (2020) Trustful resource management for service allocation in fog-enabled intelligent transportation systems. IEEE Access 8:147313–147322

    Google Scholar 

  26. Li M, Gao J, Zhao L, Shen X (2020) Deep reinforcement learning for collaborative edge computing in vehicular networks. IEEE Trans Cogn Commun Netw 6(4):1122–1135

    Google Scholar 

  27. Li H, Li X, Wang W (2020) Joint optimization of computation cost and delay for task offloading in vehicular fog networks. Trans Emerg Telecommun Technol 31(2):e3818

    MathSciNet  Google Scholar 

  28. Li L, Lv T, Huang P, Mathiopoulos PT (2020) Cost optimization of partial computation offloading and pricing in vehicular networks. J Signal Process Syst 92(12):1421–1435

    Google Scholar 

  29. Li L, Lv T, Huang P, Mathiopoulos PT (2020) Cost optimization of partial computation offloading and pricing in vehicular networks. J Sign Process Syst 92(12):1421–1435

    Google Scholar 

  30. Li Z, Yang F, Lin W, Wang Ke, Deng Z, Xiaoyi Yu, Fan L, Lei Gu (2021) A novel scheme of cross-network radio resources scheduling in SAGN based on unified resources mapping and genetic algorithm. Int J Commun Syst 34(11):e4844

    Google Scholar 

  31. Lin C, Bi Y, Zhao H, Wang Z, Wang J (2017) Scheduling algorithms for time-constrained big-file transfers in the Internet of Vehicles. J Commun Inform Netw 2(2):126–135

    Google Scholar 

  32. Lin K, Xia F, Fortino G (2019) Data-driven clustering for multimedia communication in Internet of vehicles. Futur Gener Comput Syst 94:610–619

    Google Scholar 

  33. Liu M, Song T, Jing Hu, Yang J, Gui G (2018) Deep learning-inspired message passing algorithm for efficient resource allocation in cognitive radio networks. IEEE Trans Veh Technol 68(1):641–653

    Google Scholar 

  34. Liu C, Liu K, Guo S, Xie R, Lee VC, Son SH (2020) Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles. IEEE Internet Things J 7(9):7999–8011

    Google Scholar 

  35. Liu Z, Han X, Xie YA, Yuan Y, Chan KY (2021) Energy-efficiency maximization in D2D-enabled vehicular communications with consideration of dynamic channel information and fairness. Peer-to-Peer Netw Appl 14(1):164–176

    Google Scholar 

  36. LiWang M, Hosseinalipour S, Gao Z, Tang Y, Huang L, Dai H (2019) Allocation of computation-intensive graph jobs over vehicular clouds in IoV. IEEE Internet Things J 7(1):311–324

    Google Scholar 

  37. Lv Z, Chen D, Wang Q (2020) Diversified technologies in internet of vehicles under intelligent edge computing. IEEE Trans Intell Transp Syst 22(4):2048–2059

    Google Scholar 

  38. Madan N, Malik AW, Rahman AU, Ravana SD (2020) On-demand resource provisioning for vehicular networks using flying fog. Veh Commun 25:100252

    Google Scholar 

  39. Madheswari K, Venkateswaran N (2017) Swarm intelligence based optimisation in thermal image fusion using dual tree discrete wavelet transform. Quant Infrared Thermogr J 14(1):24–43

    Google Scholar 

  40. Mahapatra SN, Singh BK, Kumar V (2020) A survey on secure transmission in internet of things: taxonomy, recent techniques, research requirements, and challenges. Arab J Sci Eng 45(8):6211–6240

    Google Scholar 

  41. Makhdoom I, Abolhasan M, Lipman J, Liu RP, Ni W (2018) Anatomy of threats to the internet of things. IEEE Commun Surveys Tutor 21(2):1636–1675

    Google Scholar 

  42. MamadouMamadou A, Toussaint J, Chalhoub G (2020) Survey on wireless networks coexistence: resource sharing in the 5G era.". Mobile Netw Appl 25(5):1749–1764

    Google Scholar 

  43. Martinez I, Hafid AS, Jarray A (2020) Design, resource management, and evaluation of fog computing systems: a survey. IEEE Internet Things J 8(4):2494–2516

    Google Scholar 

  44. Midya S, Roy A, Majumder K, Phadikar S (2020) QoS aware distributed dynamic channel allocation for V2V communication in TVWS spectrum. Comput Netw 171:107126

    Google Scholar 

  45. Qi Qi, Wang J, Ma Z, Sun H, Cao Y, Zhang L, Liao J (2019) Knowledge-driven service offloading decision for vehicular edge computing: A deep reinforcement learning approach. IEEE Trans Veh Technol 68(5):4192–4203

    Google Scholar 

  46. Qiao G, Leng S, Maharjan S, Zhang Y, Ansari N (2019) Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks. IEEE Internet Things J 7(1):247–257

    Google Scholar 

  47. Ray PP (2018) A survey on Internet of Things architectures. J King Saud Univ-Comput Infor Sci 30(3):291–319

    Google Scholar 

  48. Singh PK, Nandi SK, Nandi S (2019) A tutorial survey on vehicular communication state of the art, and future research directions. Veh Commun 18:100164

    Google Scholar 

  49. Sonmez C, Tunca C, Ozgovde A, Ersoy C (2020) Machine learning-based workload orchestrator for vehicular edge computing. IEEE Trans Intell Transp Syst 22(4):2239–2251

    Google Scholar 

  50. Sorkhoh I, Ebrahimi D, Atallah R, Assi C (2019) Workload scheduling in vehicular networks with edge cloud capabilities. IEEE Trans Veh Technol 68(9):8472–8486

    Google Scholar 

  51. Sun R, Huang Y, Zhu L (2021) Communication by credence: trust communication in vehicular Ad Hoc networks. Mob Netw Appl (2021):1–13

  52. Tan HZ, Zhu L (2020) Overall computing offloading strategy based on deep reinforcement learning in vehicle fog computing. J Eng 2020(11):1080–1087

    Google Scholar 

  53. Thirugnanam T, Ghalib MR (2020) A reward based connectivity-aware IoV neighbor selection for improving reliability in healthcare information exchange. Peer-to-Peer Netw Applic 13(6):2112–2122

    Google Scholar 

  54. Venkatramana DK, Srikantaiah SB, Moodabidri J (2017) SCGRP: SDN-enabled connectivity-aware geographical routing protocol of VANETs for urban environment. IET Netw 6(5):102–111

    Google Scholar 

  55. Wang G, Xu F (2020) Regional intelligent resource allocation in mobile edge computing based vehicular network. IEEE Access 8:7173–7182

    MathSciNet  Google Scholar 

  56. Xu X, Xue Y, Qi L, Yuan Y, Zhang X, Umer T, Wan S (2019) An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Futur Gener Comput Syst 96:89–100

    Google Scholar 

  57. Xu X, Renhao Gu, Dai F, Qi L, Wan S (2020) Multi-objective computation offloading for internet of vehicles in cloud-edge computing. Wireless Netw 26(3):1611–1629

    Google Scholar 

  58. Xu X, Fang Z, Qi L, Zhang X, He Q, Zhou X (2021) Tripres: Traffic flow prediction driven resource reservation for multimedia iov with edge computing. ACM Trans Multimedia Comput Commun Appl (TOMM) 17(2):1–21

    Google Scholar 

  59. Xue J, An Y (2021) Joint task offloading and resource allocation for multi-task multi-server NOMA-MEC networks. IEEE Access 9:16152–16163

    Google Scholar 

  60. Yang S (2020) A task offloading solution for internet of vehicles using combination auction matching model based on mobile edge computing. IEEE Access 8:53261–53273

    Google Scholar 

  61. Yang H, Xie X, Kadoch M (2019) Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency IoV communication networks. IEEE Trans Veh Technol 68(5):4157–4169

    Google Scholar 

  62. Yao W, Yahya A, Khan F, Tan Z, Rehman AU, Chuma JM, Jan MA, Babar M (2019) A secured and efficient communication scheme for decentralized cognitive radio-based Internet of vehicles. IEEE Access 7:160889–160900

    Google Scholar 

  63. Zahoor S, Mir RN (2021) Resource management in pervasive Internet of Things: A survey. J King Saud Univ-Comput Inform Sci 33(8):921–935

    Google Scholar 

  64. Zhang P, Wang C, Aujla GS, Kumar N, Guizani M (2020) IoV scenario: Implementation of a bandwidth aware algorithm in wireless network communication mode. IEEE Trans Veh Technol 69(12):15774–15785

    Google Scholar 

  65. Zhang Mu, Wang S, Gao Q (2020) A joint optimization scheme of content caching and resource allocation for internet of vehicles in mobile edge computing. J Cloud Comput 9(1):1–12

    Google Scholar 

  66. Zhao J, Kong M, Li Q, Sun X (2019) Contract-based computing resource management via deep reinforcement learning in vehicular fog computing. IEEE Access 8:3319–3329

    Google Scholar 

  67. Zheng Q, Zheng K, Zhang H, Leung VC (2016) Delay-optimal virtualized radio resource scheduling in software-defined vehicular networks via stochastic learning. IEEE Trans Veh Technol 65(10):7857–7867

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Amir Masoud Rahmani.

Ethics declarations

Competing interests

There is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, M., Abbasi, S. & Rahmani, A.M. Resource Management approaches to Internet of Vehicles. Multimed Tools Appl 82, 46811–46844 (2023). https://doi.org/10.1007/s11042-023-15590-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15590-9

Keywords

Navigation