Skip to main content
Log in

Exponential entropy-based multilevel thresholding using enhanced barnacle mating optimization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multilevel Thresholding (MLT) is a prominent image segmentation research field that can effectively handle problems encountered while collecting meaningful information from a digital image. Most of the existing entropy-based Multilevel thresholding approaches use the logarithmic behaviour of Shannon’s entropy, which does not exist for all possible points with appropriate bounded value. To evade this problem, an entropy-based on exponential information gain function is introduced as the fitness function in this paper to improve the thresholding accuracy. This research also proposes an enhanced Barnacle Mating optimization algorithm (EBMO) for obtaining appropriate threshold values by maximising the fitness function. The enhancement over basic Barnacle mating optimization is achieved by incorporating an additional Gaussian mutation strategy and a random flow towards the best solution steps with the original algorithm. The involvement of these additional steps helps the algorithm to prevent it to be stagnated at a local minimum by boosting its exploration capability. To validate the proposed optimization algorithm, it has been tested with a set of well-known benchmark functions and the CEC 2014 test suite. The results obtained in various tests are then compared with other standard and state-of-art algorithms with the help of quantitative analysis such as average, median, and standard deviation of the fitness values over several runs, qualitative analysis, such as search history, trajectory, and average fitness history and statistical analysis using Friedman Rank test and found superior to all. A more detailed analysis of the obtained results was also conducted using post hoc Bonferroni–Dunn and Holm test to observe how the proposed EBMO algorithm is significantly different from others. A comparison of the proposed exponential entropy (EE) based multilevel thresholding using EBMO (EBMO-EE) with other optimization algorithms also presented. Various performance measures such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), and Uniformity Measures (UM) obtained from different standard benchmark images of varying dimension are considered. It has been observed that there is an improvement of the thresholding accuracy, using EBMO, about 2% to 4% over others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abd Elaziz M, Nabil N, Moghdani R, et al (2021) Multilevel thresholding image segmentation based on improved volleyball premier league algorithm using whale optimization algorithm. Multimed Tools Appl

  2. Abdel-Basset M, Chang V, Mohamed R (2021) A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems. Springer, London

    Book  Google Scholar 

  3. Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol Comput 11:16–30. https://doi.org/10.1016/j.swevo.2013.02.001

    Article  Google Scholar 

  4. Agrawal S, Leena Samantaray RP, Dora L (2020) A new hybrid adaptive cuckoo search-squirrel search algorithm for brain MR image analysis, Hybrid Mac. Springer, Singapore

    Google Scholar 

  5. Ameur M, Habba M, Jabrane Y (2019) A comparative study of nature inspired optimization algorithms on multilevel thresholding image segmentation. Multimed Tools Appl 78:34353–34372. https://doi.org/10.1007/s11042-019-08133-8

    Article  Google Scholar 

  6. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  7. Bäck T, Schwefel H-P (1993) An overview of evolutionary algorithms for parameter optimization. Evol Comput 1:1–23. https://doi.org/10.1162/evco.1993.1.1.1

    Article  Google Scholar 

  8. Bakhshali MA, Shamsi M (2014) Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO). J Comput Sci 5:251–257. https://doi.org/10.1016/j.jocs.2013.07.001

    Article  Google Scholar 

  9. Chen Wei FK (2008) A multilevel thresholding algorithm for image segmentation based on particle swarm optimization. Proceedings of the 27th Chinese control conference 0:16–18. https://doi.org/10.1109/AICCSA.2016.7945752

  10. Chouksey M, Jha RK, Sharma R (2020) A fast technique for image segmentation based on two Meta-heuristic algorithms. Multimed Tools Appl 79:19075–19127. https://doi.org/10.1007/s11042-019-08138-3

    Article  Google Scholar 

  11. Dang VH, Vien NA, Chung TC (2019) A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space. Genet Program Evolvable Mach 20:479–501. https://doi.org/10.1007/s10710-019-09357-1

    Article  Google Scholar 

  12. Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Stud Comput Intell 203:23–55. https://doi.org/10.1007/978-3-642-01085-9_2

    Article  Google Scholar 

  13. Dhiman G (2021) ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Comput 37:323–353. https://doi.org/10.1007/s00366-019-00826-w

    Article  Google Scholar 

  14. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50. https://doi.org/10.1016/j.knosys.2018.06.001

    Article  Google Scholar 

  15. Eberhart R, Kennedy J (1995) New optimizer using particle swarm theory. Proceedings of the International Symposium on Micro Machine and Human Science 39–43. https://doi.org/10.1109/mhs.1995.494215

  16. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: A novel optimization algorithm. Knowl-Based Syst 191. https://doi.org/10.1016/j.knosys.2019.105190

  17. Feng Y, Zhao H, Li X et al (2017) A multi-scale 3D Otsu thresholding algorithm for medical image segmentation. Digit Signal Process A Rev J 60:186–199. https://doi.org/10.1016/j.dsp.2016.08.003

    Article  Google Scholar 

  18. Freixenet J, Muñoz X, Raba D, et al (2002) Yet another survey on image segmentation: region and boundary information integration. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Computer Vision --- ECCV 2002. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 408–422

  19. Fu KS, Mui JK (1981) A survey on image segmentation. Pattern Recogn 13:3–16. https://doi.org/10.1016/0031-3203(81)90028-5

    Article  MathSciNet  Google Scholar 

  20. Gadekallu TR, Alazab M, Kaluri R et al (2021) Hand gesture classification using a novel CNN-crow search algorithm. Complex Intell Syst 7:1855–1868. https://doi.org/10.1007/s40747-021-00324-x

    Article  Google Scholar 

  21. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010

    Article  MathSciNet  Google Scholar 

  22. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  23. Gonzalez RC, Woods RE (2006) Digital image processing (3rd Edition). Prentice-Hall, Inc., USA

    Google Scholar 

  24. Guo SW, Thompson EA (1992) Performing the exact test of hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372. https://doi.org/10.2307/2532296

    Article  Google Scholar 

  25. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  26. Hoang N (2020) A multilevel image thresholding approach using history-based adaptive a multilevel image thresholding approach using history-based adaptive differential evolution with linear population size reduction algorithm. DTU journal of science nad Technology

  27. Holland JH (1992) Genetic algorithms. Sci Am 267:66–73

    Article  Google Scholar 

  28. Holm S (1979) A simple sequentially Rejective multiple test procedure. Scand J Stat 6:65–70. https://www.jstor.org/stable/4615733

  29. Horng MH (2011) Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst Appl 38:13785–13791. https://doi.org/10.1016/j.eswa.2011.04.180

    Article  Google Scholar 

  30. Horng MH, Liou RJ (2011) Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst Appl 38:14805–14811. https://doi.org/10.1016/j.eswa.2011.05.069

    Article  Google Scholar 

  31. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175. https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

  32. Jena B, Naik MK, Wunnava A, Panda R (2019) A comparative study on multilevel thresholding using meta-heuristic algorithm. In: proceedings - 2019 international conference on applied machine learning, ICAML 2019

  33. Jia H, Ma J, Song W (2019) Multilevel thresholding segmentation for color image using modified moth-flame optimization. IEEE Access 7:44097–44134. https://doi.org/10.1109/ACCESS.2019.2908718

    Article  Google Scholar 

  34. Johari NF, Zain AM, Noorfa MH, Udin A (2013) Firefly algorithm for optimization problem. In: Information Technology for Manufacturing Systems IV. Trans Tech Publications Ltd, pp. 512–517

  35. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29:273–285. https://doi.org/10.1016/0734-189X(85)90125-2

    Article  Google Scholar 

  36. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541. https://doi.org/10.1016/j.engappai.2020.103541

    Article  Google Scholar 

  37. Khairuzzaman AKM, Chaudhury S (2019) Masi entropy based multilevel thresholding for image segmentation. Multimed Tools Appl 78:33573–33591. https://doi.org/10.1007/s11042-019-08117-8

    Article  Google Scholar 

  38. Kumar SN, Lenin Fred A, Kumar AH, et al (2020) Multilevel thresholding using crow search optimization for medical images. Comput Intell 231–258. https://doi.org/10.1515/9783110671353-014

  39. Landsat Image Gallery [WWW Document] (n.d.)

  40. Li L, Sun L, Guo J et al (2017) Modified discrete Grey wolf optimizer algorithm for multilevel image thresholding. Comput Intell Neurosci 2017:3295769. https://doi.org/10.1155/2017/3295769

    Article  Google Scholar 

  41. Li S, Chen H, Wang M et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  42. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization

  43. Liang H, Jia H, Xing Z et al (2019) Modified grasshopper algorithm-based multilevel thresholding for color image segmentation. IEEE Access 7:11258–11295. https://doi.org/10.1109/ACCESS.2019.2891673

    Article  Google Scholar 

  44. Lin Zhang LZ (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20:2378. https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  Google Scholar 

  45. Liu S-H, Mernik M, Hrnčič D, Črepinšek M (2013) A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova’s mass transfer model. Appl Soft Comput 13:3792–3805. https://doi.org/10.1016/j.asoc.2013.05.010

  46. Liu Y, Sun J, Yu H, et al (2020) An improved Grey wolf optimizer based on differential evolution and OTSU algorithm. Appl Sci 10:. https://doi.org/10.3390/app10186343

  47. Masi M (2005) A step beyond Tsallis and Rényi entropies. Phys Lett Section A Gen Atom Solid State Phys 338:217–224. https://doi.org/10.1016/j.physleta.2005.01.094

    Article  MathSciNet  Google Scholar 

  48. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  49. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  50. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  51. Mlakar U, Potočnik B, Brest J (2016) A hybrid differential evolution for optimal multilevel image thresholding. Expert Syst Appl 65:221–232. https://doi.org/10.1016/j.eswa.2016.08.046

    Article  Google Scholar 

  52. Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput J 64:161–185. https://doi.org/10.1016/j.asoc.2017.11.043

    Article  Google Scholar 

  53. Naik MK, Panda R (2016) A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition. Appl Soft Comput J 38:661–675. https://doi.org/10.1016/j.asoc.2015.10.039

    Article  Google Scholar 

  54. Naik MK, Panda R, Abraham A (2020) Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm. J King Saud Univ Comput Inf Sci https://doi.org/10.1016/j.jksuci.2020.10.030

  55. Naik MK, Panda R, Wunnava A, et al (2021) A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimed Tools Appl https://doi.org/10.1007/s11042-020-10467-7

  56. Otsu (1979) Otsu_1979_otsu_method. IEEE Trans Syst Man Cybern C:62–66. https://doi.org/10.1109/TSMC.1979.4310076

  57. Pal NR, Pal SK (1989) Object-background segmentation using new definitions of entropy. IEE Proceed E: Comput Digit Tech 136:284–295. https://doi.org/10.1049/ip-e.1989.0039

    Article  Google Scholar 

  58. Pal NR, Pal SK (1991) Entropy: a new definition and its applications. IEEE Trans Syst Man Cybern 21:1260–1270. https://doi.org/10.1109/21.120079

    Article  MathSciNet  Google Scholar 

  59. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26:1277–1294. https://doi.org/10.1016/0031-3203(93)90135-J

    Article  Google Scholar 

  60. Panda R, Agrawal S, Bhuyan S (2013) Edge magnitude based multilevel thresholding using cuckoo search technique. Expert Syst Appl 40:7617–7628. https://doi.org/10.1016/j.eswa.2013.07.060

    Article  Google Scholar 

  61. Piotrowski AP (2018) L-SHADE optimization algorithms with population-wide inertia. Inf Sci 468:117–141. https://doi.org/10.1016/j.ins.2018.08.030

    Article  Google Scholar 

  62. Raja NSM, Sukanya SA, Nikita Y (2015) Improved PSO based multi-level thresholding for Cancer infected breast thermal images using Otsu. Proced Comput Sci 48:524–529. https://doi.org/10.1016/j.procs.2015.04.130

    Article  Google Scholar 

  63. Raja NSM, Rajinikanth V, Latha K (2021) Otsu based optimal multilevel image thresholding using firefly algorithm. Stud Comput Intell 927:61–69. https://doi.org/10.1155/2014/794574Research

    Article  Google Scholar 

  64. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. CAD Comput Aid Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  65. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  66. REny (2004) Observability of Rényi’s entropy. Phys Rev E Stat Nonlinear Soft Matter Phys 69:026128

    Article  Google Scholar 

  67. Rodríguez-Esparza E, Zanella-Calzada LA, Oliva D et al (2020) An efficient Harris hawks-inspired image segmentation method. Expert Syst Appl 155. https://doi.org/10.1016/j.eswa.2020.113428

  68. Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41:233–260. https://doi.org/10.1016/0734-189X(88)90022-9

    Article  Google Scholar 

  69. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

  70. Sarkar S, Das S (2013) Multilevel image thresholding based on 2D histogram and maximum tsallis entropy - a differential evolution approach. IEEE Trans Image Process 22:4788–4797. https://doi.org/10.1109/TIP.2013.2277832

    Article  MathSciNet  Google Scholar 

  71. Sezgi S (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:220. https://doi.org/10.1117/1.1631316

    Article  Google Scholar 

  72. Shadravan S, Naji HR, Bardsiri VK (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001

    Article  Google Scholar 

  73. Shubham S, Bhandari AK (2019) A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed Tools Appl 78:17197–17238. https://doi.org/10.1007/s11042-018-7034-x

    Article  Google Scholar 

  74. Singh S, Mittal N, Singh H (2020) A multilevel thresholding algorithm using LebTLBO for image segmentation. Neural Comput & Applic 32:16681–16706. https://doi.org/10.1007/s00521-020-04989-2

    Article  Google Scholar 

  75. Suganthan PN (2012) Differential evolution algorithm: Recent advances. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS 7505:30–46. https://doi.org/10.1007/978-3-642-33860-1_4

    Article  Google Scholar 

  76. Sulaiman MH, Mustaffa Z, Saari MM, Daniyal H (2020) Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87. https://doi.org/10.1016/j.engappai.2019.103330

  77. Sun M, Wei H (2020) An improved cuckoo search algorithm for multi-level gray-scale image thresholding. Multimed Tools Appl https://doi.org/10.1007/s11042-020-08931-5

  78. Sun G, Zhang A, Yao Y, Wang Z (2016) A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding. Appl Soft Comput 46:703–730. https://doi.org/10.1016/j.asoc.2016.01.054

    Article  Google Scholar 

  79. Thippa Reddy G, Bhattacharya S, Maddikunta PKR, et al (2020) Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset. Multimed Tools Appl https://doi.org/10.1007/s11042-020-09988-y

  80. Ventura de Oliveira P, Yamanaka K (2018) Image Segmentation Using Multilevel Thresholding and Genetic Algorithm: An Approach. In: 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA). pp 380–385

  81. Wang Z, Bovik AC, Hamid Rahim Sheikh EPS (2017) Image quality assessment: from error visibility to structural similarity. Can J Civ Eng 44:253–263. https://doi.org/10.1139/cjce-2016-0381

    Article  Google Scholar 

  82. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  83. Wunnava A, Naik MK, Panda R, et al (2020) A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Eng Appl Artif Intell 94:. https://doi.org/10.1016/j.engappai.2020.103836

  84. Zar JH (1999) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  85. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Naik.

Ethics declarations

Conflict of interest

According to the authors, they have no known competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 9

Table 9 Unimodal test function

Table 10

Table 10 Scalable dimension multimodal test function

Table 11

Table 11 Fixed dimension multimodal test function

Fig. 18

Fig. 18
figure 18

3-level thresholded images (k = 2) and their corresponding histograms

Fig. 19

Fig. 19
figure 19

6-level thresholded images (k = 5) and their corresponding histograms

Fig. 20

Fig. 20
figure 20

5-level thresholded images (k = 4) and their corresponding histograms

Fig. 21

Fig. 21
figure 21

9-level thresholded images (k = 8) and their corresponding histograms

Fig. 22

Fig. 22
figure 22

Thresholding result of the proposed (EBMO-EE) method on Group-1 test images with combined histogram

Fig. 23

Fig. 23
figure 23

Thresholding result of the proposed (EBMO-EE) method on Group-2 test images with combined histogram

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, B., Naik, M.K., Panda, R. et al. Exponential entropy-based multilevel thresholding using enhanced barnacle mating optimization. Multimed Tools Appl 83, 449–502 (2024). https://doi.org/10.1007/s11042-023-15668-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15668-4

Keywords

Navigation