Skip to main content
Log in

Software defined networks (SDNs) for environmental surveillance : A Survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

There have been a number of new technologies and applications that can track various events and activities in a variety of environments. Software Defined Networking (SDN) is one of these technologies that has the ability to bring the unanticipated changes in the networking space. SDN aids in the implementation and management of new networks, lowering associated expenses. SDN’s unique characteristics make it ideal for monitoring the harsh environmental conditions. Agriculture, Military, Industry, Natural disasters, Health monitoring, Crisis response, and Emergency management are just few examples of common applications. In the last few decades, some of these applications have been of critical relevance and the subject of ongoing research. SDN becomes increasingly popular owing to its perfect benefits, which include aid in various surveillance scenarios. Thus, this survey covers several areas of surveillance and assists the readers to have a better grasp of SDN-based surveillance. Furthermore, various open research problems and the related surveillance challenges have also been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SDN:

Software Defined Networking

QoS:

Quality of Service

IE:

Intelligent Environment

UAVs:

Unmanned Aerial Vehicles

QoE :

Quality of Experience

SLR:

Systematic Literature Review

FANET:

Flying Ad Hoc Networks

IoUT:

Internet of Underwater Things

UWSN:

Underwater Wireless Sensor Network

IoT:

Internet of Things

MANET:

Mobile Adhoc NETwork

HealthIoT:

Healthcare Internet of Things

VANET:

Vehicular Adhoc NETwork

HMS:

Healthcare Monitoring System

MCHO:

Multi-Criterion Hysteresis Optimization

WS:

Wireless Networks

ETX:

Expected Transmission Count

CNN:

Convolutional Neural Network

LO:

Lion Optimization

LSTM:

Long Short Term Memory

BS:

Base Station

TE:

Traffic Engineering

CSP:

Constraint Shortest Path

IPVS:

IP Video Surveillance

AI:

Artificial Intelligence

NFV:

Network Functions Virtualization

ABC:

Artificial Bee Colony

ACO:

Ant Colony Optimisation

PSNR:

Peak Signal-to-Noise Ratio

ET:

Extended Training

MEC:

Mobile Edge Computing

MTD:

Moving Target Defense

EC:

Evolutionary Computation.

RL:

Reinforcement Learning

ICT:

Information and Communication Technologies

IP:

Internet Protocol

LFA:

Link Flooding Attack

IDS:

Intrusion Detection System

DDoS:

Distributed Denial of Service

DNN:

Deep Neural Network

ISDM:

Information Security Defense Mechanism

NIDS:

Information Security Defense Mechanism

WoT:

Web of Things

LAN:

Local Area Network

SS:

Smart Space

RSU:

Road Side Unit

ITS:

Intelligent Transportation System

ONF:

Open Network Foundation

GPS:

Global Positioning System

References

  1. AbdAli AH, Murad AH (2021) Performance Evaluation of Software Defined Network (SDN) Based Surveillance System. Turk J Comput Math Educ 12(14):6325–6342

    Google Scholar 

  2. Abdulqadder IH, Zhou S, Zou D, Aziz IT, Akber SMA (2020) Multi-layered intrusion detection and prevention in the SDN/NFV enabled cloud of 5G networks using AI-based defense mechanisms. Computer Networks 179:107364. https://doi.org/10.1016/j.comnet.2020.107364

    Article  Google Scholar 

  3. Agrawal N, Kumar R (2022) Security perspective analysis of industrial Cyber Physical Systems (I-CPS): A decade-wide survey. ISA Trans 1–16. https://doi.org/10.1016/j.isatra.2022.03.018

  4. Agrawal N, Tapaswi S (2019) Defense mechanisms against DDoS attacks in a cloud computing environment: State-of-the-art and research challenges. IEEE Commun Surv & Tutorials 21(4):3769–3795. https://doi.org/10.1109/COMST.2019.2934468

    Article  Google Scholar 

  5. Al Mtawa Y, Memari A, Haque A, Lutfiyya H (2019) Evaluating QoS in SDN-based EPC: A comparative analysis. Proceedings of the \(15^{th}\) IEEE Int Wirel Commun & Mob Comput Conf (IWCMC), Tangier, Morocco, 1279-1286. https://doi.org/10.1109/IWCMC.2019.8766706

  6. Albu-Salih AT, Khudhair HA (2021) ASR-FANET: An adaptive SDN-based routing framework for FANET. Int J Electr Comput Eng 11(5):1–10. https://doi.org/10.11591/ijece.v11i5.pp4403-4412

    Article  Google Scholar 

  7. Aljohani SL, Alenazi MJ (2021) MPResiSDN: Multipath resilient routing scheme for SDN-enabled smart cities networks. Appl Sci 11(4):1900. https://doi.org/10.3390/app11041900

    Article  Google Scholar 

  8. Alladi T, Chamola V, Kumar N (2020) PARTH: A two-stage lightweight mutual authentication protocol for UAV surveillance networks. Comput Commun 160:81–90. https://doi.org/10.1016/j.comcom.2020.05.025

    Article  Google Scholar 

  9. Al-Turjman F, Abujubbeh M, Malekloo A, Mostarda L (2020) UAVs assessment in software-defined IoT networks: An overview. Comput Commun 150:519–536. https://doi.org/10.1016/j.comcom.2019.12.004

    Article  Google Scholar 

  10. AlZoman R, Alenazi MJ (2020) Exploiting SDN to improve QoS of smart city networks against link failures. Proceedings of the \(9^{th}\) IEEE International Conference on Software Defined Systems (SDS), Paris, France, 100-106. https://doi.org/10.1109/SDS49854.2020.9143878

  11. Arif M, Wang G, Balas VE, Geman O, Castiglione A, Chen J (2020) Sdn based communications privacy-preserving architecture for vanets using fog computing. Veh Commun 26:100265. https://doi.org/10.1016/j.vehcom.2020.100265

    Article  Google Scholar 

  12. Armando A, Ranise S, Traverso R, Wrona K (2015) Compiling NATO authorization policies for enforcement in the cloud and SDNs. Proceedings of the IEEE Conf on Commun Netw Sec (CNS), Florence, Italy, 741-742. https://doi.org/10.1109/CNS.2015.7346913

  13. Baldoni G, Melita M, Micalizzi S, Rametta C, Schembra G, Vassallo A (2017, January) A dynamic, plug-and-play and efficient video surveillance platform for smart cities. Proceedings of the \(14^{th}\) IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 611-612. https://doi.org/10.1109/CCNC.2017.7983190

  14. Barka E, Dahmane S, Kerrache CA, Khayat M, Sallabi F (2021) STHM: A secured and trusted healthcare monitoring architecture using SDN and blockchain. Electr 10(15):1787. https://doi.org/10.3390/electronics10151787

    Article  Google Scholar 

  15. Bellavista P, Giannelli C, Lagkas T, Sarigiannidis P (2018) Quality management of surveillance multimedia streams via federated sdn controllers in fiwi-iot integrated deployment environments. IEEE Access 6:21324–21341. https://doi.org/10.1109/ACCESS.2018.2822401

    Article  Google Scholar 

  16. Bhatia J, Dave R, Bhayani H, Tanwar S, Nayyar A (2020) SDN-based real-time urban traffic analysis in VANET environment. Comput Commun 149:162–175. https://doi.org/10.1016/j.comcom.2019.10.011

    Article  Google Scholar 

  17. Bhattacharjya K, De D (2021) IoUT: Modelling and simulation of Edge-Drone-based Software-Defined smart Internet of Underwater Things. Simulation Modelling Practice and Theory 109:102304. https://doi.org/10.1016/j.simpat.2021.102304

    Article  Google Scholar 

  18. Chiang ML, Cheng HS, Liu HY, Chiang CY (2021) SDN-based server clusters with dynamic load balancing and performance improvement. Clust Comp 24(1):537–558. https://doi.org/10.1007/s10586-020-03135-w

    Article  Google Scholar 

  19. Cui X, Huang X, Ma Y, Meng Q (2019) A load balancing routing mechanism based on SDWSN in smart city. Electr 8(3):273. https://doi.org/10.3390/electronics8030273

    Article  Google Scholar 

  20. Dantas Silva FS, Silva E, Neto EP, Lemos M, Venancio Neto AJ, Esposito F (2020) A taxonomy of DDoS attack mitigation approaches featured by SDN technologies in IoT scenarios. Sensors 20(11):3078. https://doi.org/10.3390/s20113078

    Article  Google Scholar 

  21. Das T, Sridharan V, Gurusamy M (2019) A survey on controller placement in SDN. IEEE Commun Surv Tutorials 22(1):472–503. https://doi.org/10.1109/COMST.2019.2935453

    Article  Google Scholar 

  22. Deva Priya I, Silas S (2019) A survey on research challenges and applications in empowering the SDN-Based Internet of Things. Adv in Big Data and Cloud Comput 682:457–467. https://doi.org/10.1007/978-981-13-1882-5_39

    Article  Google Scholar 

  23. e Silva TD, de Melo CFE, Cumino P, Rosario D, Cerqueira E, De Freitas EP, (2019) STFANET: SDN-based topology management for flying ad hoc network. IEEE Access 7:173499–173514. https://doi.org/10.1109/ACCESS.2019.2956724

  24. El Jaouhari S, Bouabdallah A, Corici AA (2021) SDN-based security management of multiple WoT Smart Spaces. J Ambient Int Humanized Comput 12(10):9081–9096. https://doi.org/10.1007/s12652-020-02601-y

    Article  Google Scholar 

  25. Gaikwad S, Tafleen S, Gottumukkala R, Elgazzar K (2018) Fault tolerance of real-time video streaming protocols over sdn networks. Proceedings of the \(14^{th}\) IEEE Int Wirel Commun & Mob Comput Conf (IWCMC), Limassol, Cyprus, 101-107. https://doi.org/10.1109/IWCMC.2018.8450440

  26. Gavaskar K, Ragupathy US, Elango S, Ramyadevi M, Preethi S (2022) A novel design and implementation of IoT based real-time ATM surveillance and security system. Adv Comput Int 2(1):1–14. https://doi.org/10.1007/s43674-021-00007-7

    Article  Google Scholar 

  27. Ghosh U, Chatterjee P, Shetty S, Datta R (2020) An SDN-IoT Based Framework for Future Smart Cities: Addressing Perspective. In Internet of Things and Secure Smart Environments, Chapman and Hall/CRC, 441-468. https://doi.org/10.48550/arXiv.2007.11536

  28. Gkioulos V, Gunleifsen H, Weldehawaryat GK (2018) A systematic literature review on military software defined networks. Future Internet 10(9):88. https://doi.org/10.3390/fi10090088

    Article  Google Scholar 

  29. Go SJY, Festin CAM, Tan WM (2019) An SDN-based framework for improving the performance of underprovisioned IP Video Surveillance networks. J Netw Comput Appl 132:49–74. https://doi.org/10.1016/j.jnca.2019.01.026

    Article  Google Scholar 

  30. Guck JW, Van Bemten A, Kellerer W (2017) DetServ: Network models for real-time QoS provisioning in SDN-based industrial environments. IEEE Trans Netw Serv Manag 14(4):1003–1017. https://doi.org/10.1109/TNSM.2017.2755769

    Article  Google Scholar 

  31. Ha T, Yoon S, Risdianto AC, Kim J, Lim H (2016) Suspicious flow forwarding for multiple intrusion detection systems on software-defined networks. IEEE Netw 30(6):22–27. https://doi.org/10.1109/MNET.2016.1600106NM

    Article  Google Scholar 

  32. Han Z, Li X, Huang K, Feng Z (2018) A software defined network-based security assessment framework for cloudIoT. IEEE Internet Things J 5(3):1424–1434. https://doi.org/10.1109/JIOT.2018.2801944

    Article  Google Scholar 

  33. Herrera JL, Galán-Jiménez J, Berrocal J, Murillo JM (2021) Optimizing the Response Time in SDN-Fog Environments for Time-Strict IoT Applications. IEEE Internet Things J 8(23):17172–17185. https://doi.org/10.1109/JIOT.2021.3077992

    Article  Google Scholar 

  34. Hossain N, Hossain MZ, Hossain MA (2021) An Ontological Security Framework to Secure the SDN based IoT Networks. American J Agri Sci, Eng Tech 5(1):4–18. https://doi.org/10.54536/ajaset.v5i1.55

    Article  Google Scholar 

  35. Hsiao-Chung L, Ping W (2016) Implementation of an SDN-based security defense mechanism against DDoS attacks. DEStech Trans Economics, Business and Management. https://doi.org/10.12783/dtem/iceme-ebm2016/4183

  36. Hu L, Qiu M, Song J, Hossain MS, Ghoneim A (2015) Software defined healthcare networks. IEEE Wirel Commun 22(6):67–75. https://doi.org/10.1109/MWC.2015.7368826

    Article  Google Scholar 

  37. Iqbal W, Abbas H, Daneshmand M, Rauf B, Bangash YA (2020) An in-depth analysis of IoT security requirements, challenges, and their countermeasures via software-defined security. IEEE Internet of Things J 7(10):10250–10276. https://doi.org/10.1109/JIOT.2020.2997651

    Article  Google Scholar 

  38. Isravel DP, Silas S, Rajsingh EB (2021) SDN-based traffic management for personalized ambient assisted living healthcare system. In Intelligence in Big Data Technologies-Beyond the Hype, Springer, Singapore 379–388. https://doi.org/10.1007/978-981-15-5285-4_38

  39. Javeed D, Gao T, Khan MT (2021) SDN-Enabled Hybrid DL-Driven Framework for the Detection of Emerging Cyber Threats in IoT. Electronics 10(8):918. https://doi.org/10.3390/electronics10080918

    Article  Google Scholar 

  40. Kashef M, Visvizi A, Troisi O (2021) Smart city as a smart service system: Human-computer interaction and smart city surveillance systems. Comput in Human Behavior 124:106923. https://doi.org/10.1016/j.chb.2021.106923

    Article  Google Scholar 

  41. Killi BPR, Rao SV (2019) Controller placement in software defined networks: A comprehensive survey. Comput Netw 163:106883. https://doi.org/10.1016/j.comnet.2019.106883

    Article  Google Scholar 

  42. Kim NY, Rathore S, Ryu JH, Park JH, Park JH (2018) A survey on cyber physical system security for IoT: issues, challenges, threats, solutions. J Info Proc Syst 14(6):1361–1384. https://doi.org/10.3745/JIPS.03.0105

    Article  Google Scholar 

  43. Kroculick JB (2017) Application of assurance-driven design to capability set management. In Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 10205:1–7. https://doi.org/10.1117/12.2263171

    Article  Google Scholar 

  44. Lee Y, Kim Y, Lee Y (2014) Untraceable blind packet forwarding using centralized path control. Proceedings of the IEEE Military Commun Conf, Baltimore, MD, USA 268–273. https://doi.org/10.1109/MILCOM.2014.49

  45. Letswamotse B, Modieginyane K, Malekian R (2017) SDN based QoS provision in WSN technologies. Southern Africa Telecommunication Networks and Applications Conference (SATNAC), George South Africa, 1-2

  46. Li W, Meng W, Liu Z, Au MH (2020) Towards blockchain-based software-defined networking: security challenges and solutions. IEICE Trans Info Syst 103(2):196–203. https://doi.org/10.1587/transinf.2019INI0002

    Article  Google Scholar 

  47. Makanju A, Zincir-Heywood AN, Kiyomoto S (2017) On evolutionary computation for moving target defense in software defined networks. Proceedings of the genetic and evolutionary computation conference companion 287–288. https://doi.org/10.1145/3067695.3075604

  48. Makuvaza A, Jat DS, Gamundani AM (2021) Deep Neural Network (DNN) Solution for Real-time Detection of Distributed Denial of Service (DDoS) Attacks in Software Defined Networks (SDNs). SN Comput Sci 2(2):1–10. https://doi.org/10.1007/s42979-021-00467-1

    Article  Google Scholar 

  49. Malik J, Akhunzada A, Bibi I, Imran M, Musaddiq A, Kim SW (2020) Hybrid deep learning: an efficient reconnaissance and surveillance detection mechanism in SDN. IEEE Access 8:134695–134706. https://doi.org/10.1109/ACCESS.2020.3009849

    Article  Google Scholar 

  50. Manso P, Moura J, Serrão C (2019) SDN-based intrusion detection system for early detection and mitigation of DDoS attacks. Information 10(3):106. https://doi.org/10.3390/info10030106

    Article  Google Scholar 

  51. Martins JS (2018) Towards smart city innovation under the perspective of software-defined networking, artificial intelligence and big data. arXiv preprint arXiv:1810.11665

  52. Miao Y, Cheng Z, Li W, Ma H, Liu X, Cui Z (2016) August) Software defined integrated satellite-terrestrial network: A survey. Proceedings of the International conference on space information network, Springer, Singapore 16–25. https://doi.org/10.1007/978-981-10-4403-8_2

  53. Mihailescu M, Nguyen H, Webb MR (2015) Enhancing wireless communications with software defined networking. Proceedings of the IEEE Military Communications and Information Systems Conference (MilCIS), Canberra, ACT, Australia, 1-6. https://doi.org/10.1109/MilCIS.2015.7348945

  54. Mishra VK, Dasari VR (2014) GENI Deployment and Research at US Army Research Laboratory. Proceedings of the IEEE Military Communications Conference, Baltimore, MD, USA 995–1002. https://doi.org/10.1109/MILCOM.2014.170

  55. Mohammadi R, Javidan R (2016) An intelligent traffic engineering method over software defined networks for video surveillance systems based on artificial bee colony. Int J Int Info Tech 12(4):45–62. https://doi.org/10.4018/978-1-5225-7113-1.ch020

    Article  Google Scholar 

  56. Mohammadi R, Javidan R (2017) An adaptive type-2 fuzzy traffic engineering method for video surveillance systems over software defined networks. Multimedia Tools and Appl 76(22):23627–23642. https://doi.org/10.1007/s11042-016-4137-0

    Article  Google Scholar 

  57. Mohammadi R, Javidan R (2021) EFSUTE: A novel efficient and survivable traffic engineering for software defined networks. J Reliable Intell Environ 137:1–14. https://doi.org/10.1007/s40860-021-00139-0

    Article  Google Scholar 

  58. Mohammadi R, Javidan R, Conti M (2017) SLICOTS: An SDN-based lightweight countermeasure for TCP SYN flooding attacks. IEEE Trans Netw Ser Manag 14(2):487–497. https://doi.org/10.1109/TNSM.2017.2701549

    Article  Google Scholar 

  59. Mohammadi R, Javidan R, Keshtgari M (2018) An intelligent traffic engineering method for video surveillance systems over software defined networks using ant colony optimisation. Int J Bio-Inspired Comput 12(3):173–185. https://doi.org/10.1504/IJBIC.2018.094625

    Article  Google Scholar 

  60. Mohammadi R, Javidan R, Keshtgari M, Rikhtegar N (2021) SMOTE: an intelligent SDN-based multi-objective traffic engineering technique for telesurgery. IETE J of Res 1–11. https://doi.org/10.1080/03772063.2021.1894248

  61. Montazerolghaem A, Yaghmaee MH (2021) Demand Response Application as a Service: An SDN-based Management Framework. IEEE Trans on Smart Grid 1–14. https://doi.org/10.1109/TSG.2021.3139004

  62. Munir MS, Abedin SF, Alam MGR, Tran NH, Hong CS (2018) Intelligent service fulfillment for software defined networks in smart city. Proceedings of the IEEE International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 516-521. https://doi.org/10.1109/ICOIN.2018.8343172

  63. Nguyen HX, Webb MR, Naguleswaran S (2016) Achieving policy defined networking for military operations. Proceedings of the IEEE Military Communications and Information Systems Conference (MilCIS), Canberra, ACT, Australia, 1-6. https://doi.org/10.1109/MilCIS.2016.7797339

  64. Nguyen C, Hoang D (2020) Software-defined virtual sensors for provisioning iot services on demand. Proceedings of the \(5^{th}\) IEEE International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, 796-802. https://doi.org/10.1109/ICCCS49078.2020.9118563

  65. Nowak M, Nowak S, Domańska J, Czachórski T, (2019) Cognitive packet networks for the secure internet of things. In IEEE, (2019) Global IoT Summit (GIoTS). Aarhus, Denmark 1–4. https://doi.org/10.1109/GIOTS.2019.8766380

  66. Omnes N, Bouillon M, Fromentoux G, Le Grand O (2015) A programmable and virtualized network & IT infrastructure for the internet of things: How can NFV & SDN help for facing the upcoming challenges. Proceedings of the \(18^{th}\) IEEE International Conference on Intelligence in Next Generation Networks, Paris, France, 64-69. https://doi.org/10.1109/ICIN.2015.7073808

  67. Panev S, Latkoski P (2020) SDN-based failure detection and recovery mechanism for 5G core networks. Trans Emerg Telecommun Tech 31(2):e3721. https://doi.org/10.1002/ett.3721

    Article  Google Scholar 

  68. Pourghebleh B, Hayyolalam V (2020) A comprehensive and systematic review of the load balancing mechanisms in the Internet of Things. Clust Comput 23(2):641–661. https://doi.org/10.1007/s10586-019-02950-0

    Article  Google Scholar 

  69. Qing J, Yang Y, Jing LI, Kun MENG, Huan MA, Hao DING (2015) An SDN-based resource pre-combination dispatching strategy in military network. Proceedings of the \(3^{rd}\) IEEE International Conference on Cyberspace Technology (CCT), Beijing, 1-6. https://doi.org/10.1049/cp.2015.0834

  70. Ragavan PS, Ramasamy K (2020) Software defined networking approach based efficient routing in multihop and relay surveillance using Lion Optimization algorithm. Comput Commun 150:764–770. https://doi.org/10.1016/j.comcom.2019.11.033

    Article  Google Scholar 

  71. Rahmani AM, Babaei Z, Souri A (2021) Event-driven IoT architecture for data analysis of reliable healthcare application using complex event processing. Clust Comput 24(2):1347–1360. https://doi.org/10.1007/s10586-020-03189-w

    Article  Google Scholar 

  72. Rametta C, Baldoni G, Lombardo A, Micalizzi S, Vassallo A (2017) S6: a Smart, Social and SDN-based Surveillance System for Smart-cities. Proc Comput Sci 110:361–368. https://doi.org/10.1016/j.procs.2017.06.078

  73. Rasool RU, Ashraf U, Ahmed K, Wang H, Rafique W, Anwar Z (2019) Cyberpulse: A machine learning based link flooding attack mitigation system for software defined networks. IEEE Access 7:34885–34899. https://doi.org/10.1109/ACCESS.2019.2904236

    Article  Google Scholar 

  74. Rego A, Canovas A, Jiménez JM, Lloret J (2018) An intelligent system for video surveillance in IoT environments. IEEE Access 6:31580–31598. https://doi.org/10.1109/ACCESS.2018.2842034

    Article  Google Scholar 

  75. Rego A, Garcia L, Sendra S, Lloret J (2018) Software defined networks for traffic management in emergency situations. Proceedings of the \(5^{th}\) IEEE International Conference on Software Defined Systems (SDS), Barcelona, Spain, 45-51. https://doi.org/10.1109/SDS.2018.8370421

  76. Rehmani MH, Davy A, Jennings B, Assi C (2019) Software defined networks-based smart grid communication: A comprehensive survey. IEEE Commun Surv Tutorials 21(3):2637–2670. https://doi.org/10.1109/COMST.2019.2908266

    Article  Google Scholar 

  77. Rezende P, Kianpisheh S, Glitho R, Madeira E (2019) An SDN-based framework for routing multi-streams transport traffic over multipath networks. Proceedings of the IEEE International Conference on Communications (ICC), Shanghai, China, 1-6. https://doi.org/10.1109/ICC.2019.8762061

  78. Rietz R, Cwalinski R, König H, Brinner A (2018) An SDN-based approach to ward off LAN attacks. J Comput Netw Commun 4127487:1–13. https://doi.org/10.1155/2018/4127487

    Article  Google Scholar 

  79. Salahuddin MA, Al-Fuqaha A, Guizani M, Shuaib K, Sallabi F (2018) Softwarization of internet of things infrastructure for secure and smart healthcare. Comput 50(7):74–79. https://doi.org/10.1109/MC.2017.195

    Article  Google Scholar 

  80. Scott-Hayward S, Natarajan S, Sezer S (2015) A survey of security in software defined networks. IEEE Communs Surv Tutorials 18(1):623–654. https://doi.org/10.1109/COMST.2015.2453114

    Article  Google Scholar 

  81. Silva H, Neto A (2016) A holistic SDN-capable session-plane tailored for efficient IoMT smart surveillance applications. Proceedings of the IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 1-6. https://doi.org/10.1109/GLOCOMW.2016.7848814

  82. Singh KD, Sood SK (2020) Optical fog-assisted cyber-physical system for intelligent surveillance in the education system. Comput Appl Eng Educ 28(3):692–704. https://doi.org/10.1002/cae.22240

    Article  Google Scholar 

  83. Singh KD, Sood SK (2021) QoS-aware optical fog-assisted cyber-physical system in the 5g ready heterogeneous network. Wireless Personal Commun 116(4):3331–3350. https://doi.org/10.1007/s11277-020-07855-5

    Article  Google Scholar 

  84. Sisi Z, Souri A (2021) Blockchain technology for energy-aware mobile crowd sensing approaches in Internet of Things. Trans on Emerging Telecommun Tech e4217. https://doi.org/10.1002/ett.4217

  85. Sood SK, Singh KD (2021) Identification of a malicious optical edge device in the SDN-based optical fog/cloud computing network. J Opt Commun 42(1):91–102. https://doi.org/10.1515/joc-2018-0047

    Article  Google Scholar 

  86. Sultana N, Chilamkurti N, Peng W, Alhadad R (2019) Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Netw Appl 12(2):493–501. https://doi.org/10.1007/s12083-017-0630-0

    Article  Google Scholar 

  87. Sultana R, Grover J, Tripathi M (2021) Security of sdn-based vehicular ad hoc networks: State-of-the-art and challenges. Veh Commun 27:100284. https://doi.org/10.1016/j.vehcom.2020.100284

    Article  Google Scholar 

  88. Sun L, Zou Y (2020) Mobile edge computing based video surveillance model for improving the performance of extended training. Int Tech Lett e236. https://doi.org/10.1002/itl2.236

  89. Tadros CN, Mokhtar B, Rizk MR (2018) Software defined network based management framework for wireless sensor networks. Proceedings of the \(9^{th}\) IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1200-1205. https://doi.org/10.1109/IEMCON.2018.8615087

  90. Tamizhselvan C, Vijayalakshmi V (2020) SDN-MCHO: Software Define network based Multi-criterion Hysteresis Optimization based for reliable device routing in Internet of Things for the smart surveillance application. Computer Communications 153:632–640. https://doi.org/10.1016/j.comcom.2020.02.029

    Article  Google Scholar 

  91. Tayyaba SK, Shah MA (2017) 5G cellular network integration with SDN: Challenges, issues and beyond. Proceedings of the IEEE International conference on communication, computing and digital systems (C-CODE), Islamabad, Pakistan, 48-53. https://doi.org/10.1109/C-CODE.2017.7918900

  92. Theodorou T, Mamatas L (2020) A versatile out-of-band software-defined networking solution for the Internet of Things. IEEE Access 8:103710–103733. https://doi.org/10.1109/ACCESS.2020.2999087

    Article  Google Scholar 

  93. ur Rasool R, Wang H, Ashraf U, Ahmed K, Anwar Z, Rafique W, (2020) A survey of link flooding attacks in software defined network ecosystems. J Netw Comput Appl 172:102803. https://doi.org/10.1016/j.jnca.2020.102803

  94. Wang C, Zhang Y, Chen X, Liang K, Wang Z (2019) SDN-based handover authentication scheme for mobile edge computing in cyber-physical systems. IEEE Int Things J 6(5):8692–8701. https://doi.org/10.1109/JIOT.2019.2922979

    Article  Google Scholar 

  95. Wang S, Gomez KM, Sithamparanathan K, Zanna P (2019, December) Software defined network security framework for IoT based smart home and city applications. Proceedings of the \(13^{th}\) IEEE International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, QLD, Australia, 1-8. https://doi.org/10.1109/ICSPCS47537.2019.9008703

  96. Wrona K, Oudkerk S (2015) Integrated content-based information security for future military systems. Proceedings of the IEEE Military Communications Conference, Tampa, FL, USA 1230–1235. https://doi.org/10.1109/MILCOM.2015.7357614

  97. Wrona K, Oudkerk S, Szwaczyk S, Amanowicz M (2016) Content-based security and protected core networking with software-defined networks. IEEE Communications Magazine 54(10):138–144. https://doi.org/10.1109/MCOM.2016.7588283

    Article  Google Scholar 

  98. Wrona K, Amanowicz M, Szwaczyk S, Gierłowski K (2017) SDN testbed for validation of cross-layer data-centric security policies. Proceedings of the IEEE International Conference on Military Communications and Information Systems (ICMCIS), Oulu, Finland, 1-6. https://doi.org/10.1109/ICMCIS.2017.7956483

  99. Yurekten O, Demirci M (2021) SDN-based cyber defense: A survey. Futur Gener Comput Syst 115:126–149. https://doi.org/10.1016/j.future.2020.09.006

    Article  Google Scholar 

  100. Zacarias I, Schwarzrock J, Gaspary LP, Kohl A, Fernandes RQ, Stocchero JM, de Freitas EP (2018) Enhancing mobile military surveillance based on video streaming by employing software defined networks. Wirel Commun Mob Comput 2354603:1–13. https://doi.org/10.1155/2018/2354603

    Article  Google Scholar 

  101. Zacarias I, Schwarzrock J, Gaspary LP, Kohl A, Fernandes RQ, Stocchero JM, De Freitas EP (2017, October) Employing SDN to control video streaming applications in military mobile networks. Proceedings of the \(16^{th}\) IEEE International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1-4. https://doi.org/10.1109/NCA.2017.8171390

  102. Zhang X, Wang Y, Geng G, Yu J (2021) Delay-Optimized Multicast Tree Packing in Software-Defined Networks. IEEE Trans Serv Comput 1–14. https://doi.org/10.1109/TSC.2021.3106264

  103. Zhou X, Xu X, Liang W, Zeng Z, Yan Z (2021) Deep-Learning-Enhanced Multitarget Detection for End-Edge-Cloud Surveillance in Smart IoT. IEEE Int Things J 8(16):12588–12596. https://doi.org/10.1109/JIOT.2021.3077449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Agrawal.

Ethics declarations

Conflicts of interest

There is no conflict of interest. The manuscript is not submitted to any other journal

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Agrawal, N. Software defined networks (SDNs) for environmental surveillance : A Survey. Multimed Tools Appl 83, 11323–11365 (2024). https://doi.org/10.1007/s11042-023-15729-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15729-8

Keywords

Navigation