Skip to main content
Log in

Classifying diabetic macular edema grades using extended power of deep learning

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Diabetic macular edema (DME) is the expansion of the disease diabetic retinopathy (DR). Diabetic persons with a severe risk of DME can enter the phase of irreversible vision loss. To avoid this stage, patients must undergo identification and treatment twice a year. For identification purposes, this paper introduces a method called Squeeze-and-Excitation embedded DenseNet121 (SEDense) to classify the severity of DME grades. Pre-processing, such as augmentation and green channel extraction, is performed. The augmentation produces 1170 images from the original 413 images to train. The SEDense is assessed using 103 retinal fundus images. SEDense outperformed other state-of-the-art models presented in the “Diabetic Retinopathy - Segmentation and Grading Challenge” at ISBI-2018. It classifies the DME grades with 88.35% accuracy. The proposed SEDense model reduces the hassle of ophthalmologists in diagnosing DME grades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

IDRiD dataset is available at https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid

Notes

  1. https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid

References

  1. Acharya UR, Mookiah MRK, Koh JE, Tan JH, Bhandary SV, Rao AK, Hagiwara Y, Chua CK, Laude A (2017) Automated diabetic macular edema (dme) grading system using dwt, dct features and maculopathy index. Computers in biology and medicine 84:59–68

    Article  Google Scholar 

  2. Giancardo L, Meriaudeau F, Karnowski TP, Tobin KW, Grisan E, Favaro P, Ruggeri A, Chaum E (2010) Textureless macula swelling detection with multiple retinal fundus images. IEEE transactions on biomedical engineering 58(3):795–799

  3. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG (1995) Quantitative assessment of macular edema with optical coherence tomography. Archives of ophthalmology 113(8):1019–1029

  4. Breiman L (2001) Random forests. Machine learning 45:5–32

    Article  Google Scholar 

  5. Chalakkal R, Hafiz F, Abdulla W, Swain A (2021) An efficient framework for automated screening of clinically significant macular edema. Computers in biology and medicine 130:104128

    Article  Google Scholar 

  6. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3):25

  7. Chowriappa P, Dua S, Acharya UR, Krishnan MMR (2013) Ensemble selection for feature-based classification of diabetic maculopathy images. Computers in biology and medicine 43(12):2156–2162

    Article  Google Scholar 

  8. Davidson JA, Ciulla TA, McGill JB, Kles KA, Anderson PW (2007) How the diabetic eye loses vision. Endocrine 32(1):107–116

    Article  Google Scholar 

  9. dos Santos JCM, Carrijo GA, de Fátima dos Santos Cardoso C, Ferreira JC, Sousa PM, Patrocínio AC, (2020) Fundus image quality enhancement for blood vessel detection via a neural network using clahe and wiener filter. Research on biomedical engineering 36:107–119

  10. Ferris FL (1993) How effective are treatments for diabetic retinopathy? Jama 269(10):1290–1291

    Article  Google Scholar 

  11. Gayathri S, Gopi VP, Palanisamy P (2020) A lightweight cnn for diabetic retinopathy classification from fundus images. Biomedical signal processing and control 62:102115

    Article  Google Scholar 

  12. Giancardo L, Meriaudeau F, Karnowski TP, Tobin KW, Grisan E, Favaro P, Ruggeri A, Chaum E (2010) Textureless macula swelling detection with multiple retinal fundus images. IEEE transactions on biomedical engineering 58(3):795–799

    Article  Google Scholar 

  13. Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW Jr, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical image analysis 16(1):216–226

    Article  Google Scholar 

  14. Ren F, Cao P, Zhao D, Wan C (2018) Diabetic macular edema grading in retinal images using vector quantization and semi-supervised learning. Technology and health care 26(S1):389–397

  15. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG (1995) Quantitative assessment of macular edema with optical coherence tomography. Archives of ophthalmology 113(8):1019–1029

    Article  Google Scholar 

  16. Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K (2014) Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869

  17. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141

  18. Saman G, Gohar N, Noor S, Shahnaz A, Idress S, Jehan N, Rashid R, Khattak SS (2020) Automatic detection and severity classification of diabetic retinopathy. Multimedia Tools Appl 79:31803–31817

  19. Rekhi RS, Issac A, Dutta MK (2017) Automated detection and grading of diabetic macular edema from digital colour fundus images. In 2017 4th IEEE uttar pradesh section international conference on electrical, computer and electronics (UPCON), pp 482–486 IEEE

  20. Acharya UR, Mookiah MRK, Koh JE, Tan JH, Bhandary SV, Rao AK, Hagiwara Y, Chua CK, Laude A (2017) Automated diabetic macular edema (dme) grading system using dwt, dct features and maculopathy index. Computers in biology and medicine 84:59–68

  21. Jadhav AS, Patil PB, Biradar S (2021) Optimal feature selection-based diabetic retinopathy detection using improved rider optimization algorithm enabled with deep learning. Evolutionary intelligence 14(4):1431–1448

    Article  Google Scholar 

  22. Lim S, Ahmed M, Lim S (2017) Automatic classification of diabetic macular edema using a modified completed local binary pattern (clbp). In 2017 IEEE international conference on signal and image processing applications (ICSIPA), pp 6–10 IEEE

  23. Jones S, Edwards R (2010) Diabetic retinopathy screening: a systematic review of the economic evidence. Diabetic medicine 27(3):249–256

    Article  Google Scholar 

  24. Kollias AN, Ulbig MW (2010) Diabetic retinopathy: early diagnosis and effective treatment. Deutsches arzteblatt international 107(5):75

    Google Scholar 

  25. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  26. Kumar Y, Gupta S (2023) Deep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular edema, drusen and healthy eyes: an experimental review. Arch Comput Methods Eng 30(1):521–541

    Article  Google Scholar 

  27. Kumar A, Tewari AS (2022) Risk identification of diabetic macular edema using e-adoption of emerging technology. International journal of E-adoption (IJEA) 14(3):1–20

    Article  Google Scholar 

  28. Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin Jr KW, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical image analysis 16(1):216–226

  29. Ramasubramanian B, Mahendran G (2012) An efficient integrated approach for the detection of exudates and diabetic maculopathy in colour fundus images. Advanced computing 3(5):83

  30. Lee S, Fallah N, Forooghian F, Ko A, Pakzad-Vaezi K, Merkur AB, Kirker AW, Albiani DA, Young M, Sarunic MV et al (2013) Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration. Investigative ophthalmology & visual science 54(4):2864–2871

    Article  Google Scholar 

  31. Chalakkal R, Hafiz F, Abdulla W, Swain A (2021) An efficient framework for automated screening of clinically significant macular edema. Computers in biology and medicine 130:104128

  32. Li K, Wu X, Chen DZ, Sonka M (2005) Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE transactions on pattern analysis and machine intelligence 28(1):119–134

    Google Scholar 

  33. Baby CG, Chandy DA (2013) Content-based retinal image retrieval using dual-tree complex wavelet transform. In 2013 International conference on signal processing, image processing & pattern recognition, pp 195–199 IEEE

  34. Lu D, Heisler M, Lee S, Ding GW, Navajas E, Sarunic MV, Beg MF (2019) Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Medical image analysis 54:100–110

  35. Lin S, Ramulu P, Lamoureux EL, Sabanayagam C (2016) Addressing risk factors, screening, and preventative treatment for diabetic retinopathy in developing countries: a review. Clinical & experimental ophthalmology 44(4):300–320

    Article  Google Scholar 

  36. Lee S, Fallah N, Forooghian F, Ko A, Pakzad-Vaezi K, Merkur AB, Kirker AW, Albiani DA, Young M, Sarunic MV, et al. (2013) Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration. Investigative ophthalmology & visual science 54(4):2864–2871

  37. Lu D, Heisler M, Lee S, Ding GW, Navajas E, Sarunic MV, Beg MF (2019) Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Medical image analysis 54:100–110

    Article  Google Scholar 

  38. Kumar A, Tewari AS (2022) Risk identification of diabetic macular edema using e-adoption of emerging technology. International journal of E-adoption (IJEA) 14(3):1–20

  39. Math L, Fatima R (2021) Adaptive machine learning classification for diabetic retinopathy. Multimedia Tools Appl 80(4):5173–5186

    Article  Google Scholar 

  40. Murugan R, Roy P, Singh U (2020) An abnormality detection of retinal fundus images by deep convolutional neural networks. Multimedia Tools Appl 79:24949–24967

    Article  Google Scholar 

  41. Singh RK, Gorantla R (2020) Dmenet: diabetic macular edema diagnosis using hierarchical ensemble of cnns. Plos one 15(2):0220677

  42. Nair LR (2020) Retonet: a deep learning architecture for automated retinal ailment detection. Multimedia Tools Appl 79(21–22):15319–15328

    Article  Google Scholar 

  43. Math L, Fatima R (2021) Adaptive machine learning classification for diabetic retinopathy. Multimedia Tools Appl 80(4):5173–5186

  44. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3):25

    Article  Google Scholar 

  45. Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, Bae W, Liu L, Wang J, Liu X, Gao L et al (2020) Idrid: Diabetic retinopathy-segmentation and grading challenge. Medical image analysis 59:101561

    Article  Google Scholar 

  46. Randive SN, Rahulkar AD, Senapati RK (2018) Lvp extraction and triplet-based segmentation for diabetic retinopathy recognition. Evolutionary Intelligence 11:117–129

  47. Jadhav AS, Patil PB, Biradar S (2021) Optimal feature selection-based diabetic retinopathy detection using improved rider optimization algorithm enabled with deep learning. Evolutionary intelligence 14(4):1431–1448

  48. Rahim SS, Palade V, Shuttleworth J, Jayne C (2016) Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain informatics 3:249–267

    Article  Google Scholar 

  49. Raman R, Gella L, Srinivasan S, Sharma T (2016) Diabetic retinopathy: An epidemic at home and around the world. Indian journal of ophthalmology 64(1):69

    Article  Google Scholar 

  50. Ramasubramanian B, Mahendran G (2012) An efficient integrated approach for the detection of exudates and diabetic maculopathy in colour fundus images. Advanced computing 3(5):83

    Google Scholar 

  51. Randive SN, Rahulkar AD, Senapati RK (2018) Lvp extraction and triplet-based segmentation for diabetic retinopathy recognition. Evolutionary Intelligence 11:117–129

    Article  Google Scholar 

  52. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  53. Ren F, Cao P, Zhao D, Wan C (2018) Diabetic macular edema grading in retinal images using vector quantization and semi-supervised learning. Technology and health care 26(S1):389–397

    Article  Google Scholar 

  54. Lim S, Zaki W, Hussain A, Lim S, Kusalavan S (2011) Automatic classification of diabetic macular edema in digital fundus images. In 2011 IEEE colloquium on humanities, science and engineering. pp 265–269 IEEE

  55. Saman G, Gohar N, Noor S, Shahnaz A, Idress S, Jehan N, Rashid R, Khattak SS (2020) Automatic detection and severity classification of diabetic retinopathy. Multimedia Tools Appl 79:31803–31817

    Article  Google Scholar 

  56. Singh RK, Gorantla R (2020) Dmenet: diabetic macular edema diagnosis using hierarchical ensemble of cnns. Plos one 15(2):0220677

    Article  Google Scholar 

  57. Syed AM, Akram MU, Akram T, Muzammal M, Khalid S, Khan MA (2018) Fundus images-based detection and grading of macular edema using robust macula localization. IEEE Access 6:58784–58793

    Article  Google Scholar 

  58. Ting DSW, Cheung GCM, Wong TY (2016) Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clinical & experimental ophthalmology 44(4):260–277

    Article  Google Scholar 

  59. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  60. Wilkinson CP, Ferris FL III, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682

    Article  Google Scholar 

  61. Wu T, Liu L, Zhang T, Wu X (2022) Deep learning-based risk classification and auxiliary diagnosis of macular edema. Intelligence-Based Medicine 6:100053

    Article  Google Scholar 

  62. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In Icml

Download references

Funding

No funding has been received

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they do not have any conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Tewari, A.S. Classifying diabetic macular edema grades using extended power of deep learning. Multimed Tools Appl 83, 14151–14172 (2024). https://doi.org/10.1007/s11042-023-15746-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15746-7

Keywords

Navigation