Skip to main content
Log in

Relaxed support vector based dictionary learning for image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Discriminative dictionary learning (DDL) has attracted significant attention in the field of image classification. To enhance the classification performance, most existing discriminative dictionary learning methods introduce supervision information on the dictionary to project raw training samples into a coefficient subspace. However, the strict constraint on coefficient features may not conducive to the separation of the training samples from different classes for dictionary learning. In this paper, we propose Relaxed Support Vector based Dictionary Learning (RSVDL) for image recognition, which can efficiently learn coefficient features with powerful discrimination and representation capabilities. By constructing a relaxed coefficient subspace that is closely associated with label information, the discriminative of the learned dictionary is also improved. Experimental results on several benchmark datasets show that the proposed RSVDL method is very effective for various image classification tasks. Moreover, the experiments on more challenging datasets further reveal the state-of-art performance of our method by using with the CNN features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data used during this study are public datasets, which can be obtained directly in the references, also we can provide them if the requirement.

References

  1. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745. https://doi.org/10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  2. Yan X, Wang Y, Song Q, Dai K (2016) Salient object detection by multi-level features learning determined sparse reconstruction. In: IEEE International Conference on Image Processing, pp 2762–2766. https://doi.org/10.1109/ICIP.2016.7532862

  3. Zhang Q, Li B (2010) Discriminative K-SVD for dictionary learning in face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2691–2698. https://doi.org/10.1109/CVPR.2010.5539989

  4. Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. In: Proceedings of the IEEE Conference on Computer Vision, pp 543–550. https://doi.org/10.1109/ICCV.2011.6126286

  5. Cai S, Zuo W, Zhang L, Feng X, Wang P (2014) Support vector guided dictionary learning. In: Proceedings of the European Conference on Computer Vision, pp 624–639. https://doi.org/10.1007/978-3-319-10593-2_41

  6. Gu S, Zhang L, Zuo W, Feng X (2014) Projective dictionary pair learning for pattern classification. In: Advances in Neural Information Processing Systems, pp 793–801

  7. Zhou P, Zhang C, Lin Z (2017) Bilevel model-based discriminative dictionary learning for recognition. IEEE Trans Image Process 26(3):1173–1187. https://doi.org/10.1109/TIP.2016.2623487

    Article  MathSciNet  Google Scholar 

  8. Li Z, Lai Z, Xu Y, Yang J, Zhang D (2017) A locality-constrained and label embedding dictionary learning algorithm for image classification. IEEE Trans. Neural Netw. Learn. Syst. 28(2):278–293. https://doi.org/10.1109/TNNLS.2015.2508025

    Article  MathSciNet  Google Scholar 

  9. Wang D, Kong S (2014) A classification-oriented dictionary learning model: Explicitly learning the particularity and commonality across categories. Pattern Recognit 47(2):885–898. https://doi.org/10.1016/j.patcog.2013.08.004

    Article  Google Scholar 

  10. Wang X, Gu Y (2017) Cross-label suppression: A discriminative and fast dictionary learning with group regularization. IEEE Trans Image Process 26(8):3859–3873. https://doi.org/10.1109/TIP.2017.2703101

    Article  MathSciNet  Google Scholar 

  11. Pham DS, Venkatesh S (2008) Joint learning and dictionary construction for pattern recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8. https://doi.org/10.1109/CVPR.2008.4587408

  12. Quan Y, Xu Y, Sun Y, Huang Y, Ji H (2016) Sparse coding for classification via discrimination ensemble. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5839–5847. https://doi.org/10.1109/CVPR.2016.629

  13. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227. https://doi.org/10.1109/TPAMI.2008.79

    Article  Google Scholar 

  14. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: Proceedings of the IEEE Conference on Computer Vision, pp 471–478. https://doi.org/10.1109/ICCV.2011.6126277

  15. Elhamifar E, Vidal R (2011) Robust classification using structured sparse representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1873–1879. https://doi.org/10.1109/CVPR.2011.5995664

  16. Akhtar N, Shafait F, Mian A (2017) Efficient classification with sparsity augmented collaborative representation. Pattern Recognit 65:136–145. https://doi.org/10.1016/j.patcog.2016.12.017

    Article  Google Scholar 

  17. Jiang Z, Lin Z, Davis LS (2013) Label consistent K-SVD: Learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35(11):2651–2664. https://doi.org/10.1109/TPAMI.2013.88

    Article  Google Scholar 

  18. Chen Z, Wu XJ, Yin HF, Kittler J (2020) Noise-robust dictionary learning with slack block-diagonal structure for face recognition. Pattern Recognit 100:107–118. https://doi.org/10.1016/j.patcog.2019.107118

    Article  Google Scholar 

  19. Ramirez I, Sprechmann P, Sapiro G (2010) Classification and clustering via dictionary learning with structured incoherence and shared features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3501–3508. https://doi.org/10.1109/CVPR.2010.5539964

  20. Yang M, Chang H, Luo W, Yang J (2017) Fisher discrimination dictionary pair learning for image classification. Neurocomputing 269:13–20. https://doi.org/10.1016/j.neucom.2016.08.146

    Article  Google Scholar 

  21. Yang M, Chang H, Luo W (2017) Discriminative analysis-synthesis dictionary learning for image classification. Neurocomputing 219:404–411. https://doi.org/10.1016/j.neucom.2016.09.037

    Article  Google Scholar 

  22. Vu TH, Monga V (2017) Fast low-rank shared dictionary learning for image classification. IEEE Trans Image Process 26(11):5160–5175. https://doi.org/10.1109/TIP.2017.2729885

    Article  MathSciNet  Google Scholar 

  23. Cai YH, Wu XJ, Chen Z, Xu TY (2022) Structured classifier-based dictionary pair learning for pattern classification. Pattern Analysis and Applications 25(2):425–440. https://doi.org/10.1007/s10044-021-01046-z

    Article  Google Scholar 

  24. Zhang Z, Sun Y, Wang Y, Zhang Z, Zhang H, Liu G, Wang M (2020) Twin-incoherent self-expressive locality-adaptive latent dictionary pair learning for classification. IEEE Trans Neural Netw Learn Syst 32(3):947–961. https://doi.org/10.1109/TNNLS.2020.2979748

    Article  MathSciNet  Google Scholar 

  25. Jiang K, Zhao C, Zhu L, Sun Q (2022) Class-oriented and label embedding analysis dictionary learning for pattern classification. Multimed Tools Appl 1–24

  26. Sun Y, Zhang Z, Jiang W, Zhang Z, Zhang L, Yan S, Wang M (2020) Discriminative local sparse representation by robust adaptive dictionary pair learning. IEEE Trans Neural Netw Learn Syst 31(10):4303–4317. https://doi.org/10.1109/TNNLS.2019.2954545

    Article  MathSciNet  Google Scholar 

  27. Li Z, Lai Z, Xu Y, Yang J, Zhang D (2015) A locality-constrained and label embedding dictionary learning algorithm for image classification. IEEE Trans Neural Netw Learn Syst 28(2):1–16. https://doi.org/10.1109/TNNLS.2015.2508025

    Article  MathSciNet  Google Scholar 

  28. Yang BQ, Guan XP, Zhu JW, Gu CC, Wu KJ, Xu JJ (2021) Svms multi-class loss feedback based discriminative dictionary learning for image classification. Pattern Recognit 112:107690. https://doi.org/10.1016/j.patcog.2020.107690

    Article  Google Scholar 

  29. Chen Z, Wu XJ, Kittler J (2021) Relaxed block-diagonal dictionary pair learning with locality constraint for image recognition. IEEE Trans Neural Netw Learn Syst 1:1–15. https://doi.org/10.1109/TNNLS.2021.3053941

    Article  Google Scholar 

  30. He Y, Kavukcuoglu K, Wang Y, Szlam A, Qi Y (2014) Unsupervised feature learning by deep sparse coding. In: Proceedings of the 2014 SIAM International Conference on Data Mining, pp 902–910. https://doi.org/10.1137/1.9781611973440.103

  31. Zhang S, Wang J, Tao X, Gong Y, Zheng N (2017) Constructing deep sparse coding network for image classification. Pattern Recognit 64:130–140. https://doi.org/10.1016/j.patcog.2016.10.032

    Article  Google Scholar 

  32. Bo L, Ren X, Fox D (2013) Multipath sparse coding using hierarchical matching pursuit. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 660–667. https://doi.org/10.1109/CVPR.2013.91

  33. Lu X, Wang W, Ma C, Shen, J Shao L, Porikli F (2019) See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3623–3632. https://doi.org/10.1109/CVPR.2019.00374

  34. Lu X, Wang W, Shen J, Crandall DJ, Van Gool L (2021) Segmenting objects from relational visual data. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(11):7885–7897. https://doi.org/10.1109/TPAMI.2021.3115815

    Article  Google Scholar 

  35. Liao X, Yin J, Chen M, Qin Z (2020) Adaptive payload distribution in multiple images steganography based on image texture features. IEEE Transactions on Dependable and Secure Computing 19(2):897–911. https://doi.org/10.1109/TDSC.2020.3004708

  36. Liao X, Yu Y, Li B, Li Z, Qin Z (2019) A new payload partition strategy in color image steganography. IEEE Transactions on Circuits and Systems for Video Technology 30(3):685–696. https://doi.org/10.1109/TCSVT.2019.2896270

    Article  Google Scholar 

  37. Tan J, Liao X, Liu J, Cao Y, Jiang H (2021) Channel attention image steganography with generative adversarial networks. IEEE Transactions on Network Science and Engineering 9(2):888–903. https://doi.org/10.1109/TNSE.2021.3139671

    Article  Google Scholar 

  38. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Communications of the ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  39. Bhadoriya V, Jain N, Verma NK, Kumar R (2022) Resemblance of image classification methods in computer vision. ECS Transactions 107(1)7771. https://doi.org/10.1149/10701.7771ecst

  40. AprilPyone M, Kiya H (2022) Privacy-preserving image classification using an isotropic network. IEEE MultiMedia 29(2):23–33. https://doi.org/10.1109/MMUL.2022.3168441

    Article  Google Scholar 

  41. Gao Z, Guo S, Xu C, Zhang J, Gong M, Del Ser J, Li S (2022) Multi-domain adversarial variational bayesian inference for domain generalization. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2022.3232112

    Article  Google Scholar 

  42. Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A (2014) Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp 487–495. http://hdl.handle.net/1721.1/96941

  43. Yang S, Ramanan D (2015) Multi-scale recognition with DAG-CNNs. In: Proceedings of the IEEE Conference on Computer Vision, pp 1215–1223. https://doi.org/10.1109/ICCV.2015.144

  44. Fang X, Xu Y, Li X, Lai Z, Wong WK, Fang B (2017) Regularized label relaxation linear regression. IEEE Trans Neural Netw Learn Syst 29(4):1006–1018. https://doi.org/10.1109/TNNLS.2017.2648880

    Article  Google Scholar 

  45. Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336. https://doi.org/10.1109/TIP.2010.2090535

    Article  MathSciNet  Google Scholar 

  46. Xiang S, Nie F, Meng G, Pan C, Zhang C (2012) Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw Learn Syst 23(11):1738–1754. https://doi.org/10.1109/TNNLS.2012.2212721

    Article  Google Scholar 

  47. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122. https://doi.org/10.1561/2200000016

    Article  Google Scholar 

  48. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1794–1801. https://doi.org/10.1109/CVPR.2009.5206757

  49. Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698. https://doi.org/10.1109/TPAMI.2005.92

    Article  Google Scholar 

  50. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. rep., 07-49, University of Massachusetts, Amherst

  51. Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70. https://doi.org/10.1109/CVPR.2004.383

    Article  Google Scholar 

  52. Yao B, Jiang X, Khosla A, Lin AL, Guibas L, Fei-Fei L (2011) Human action recognition by learning bases of action attributes and parts. In: Proceedings of the IEEE Conference on Computer Vision, pp 1331–1338. https://doi.org/10.1109/ICCV.2011.6126386

  53. Cai S, Zhang L, Zuo W, Feng X (2016) A probabilistic collaborative representation based approach for pattern classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2950–2959. https://doi.org/10.1109/CVPR.2016.322

  54. Simon M, Rodner E (2015) Neural activation constellations: Unsupervised part model discovery with convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 1143–1151. https://doi.org/10.1109/ICCV.2015.136

  55. He Y, Kavukcuoglu K, Wang Y, Szlam A, Qi Y (2014) Unsupervised feature learning by deep sparse coding, in: Proceedings of the 2014 SIAM international conference on data mining, pp 902–910. https://doi.org/10.1137/1.9781611973440.103

  56. Goh H, Thome N, Cord M, Lim JH (2014) Learning deep hierarchical visual feature coding. IEEE Trans Neural Netw Learn Syst 25(12):2212–2225. https://doi.org/10.1109/TNNLS.2014.2307532

    Article  Google Scholar 

  57. Zhang XY, Wang L, Xiang S, Liu CL (2014) Retargeted least squares regression algorithm. IEEE Trans Neural Netw Learn Syst 26(9):2206–2213. https://doi.org/10.1109/TNNLS.2014.2371492

    Article  MathSciNet  Google Scholar 

  58. Dong J, Yang L, Liu C, Cheng W, Wang W (2022) Support vector machine embedding discriminative dictionary pair learning for pattern classification. Neural Networks 155:498–511. https://doi.org/10.1016/j.neunet.2022.08.031

    Article  Google Scholar 

  59. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2169–2178. https://doi.org/10.1109/CVPR.2006.68

  60. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: A deep convolutional activation feature for generic visual recognition. In: Proceedings of the International Conference on Machine Learning, pp 647–655

  61. Liu Y, Zhang YM, Zhang XY, Liu CL (2016) Adaptive spatial pooling for image classification. Pattern Recognit 55:58–67. https://doi.org/10.1016/j.patcog.2016.01.030

    Article  Google Scholar 

  62. Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322. https://doi.org/10.1109/TSP.2006.881199

    Article  Google Scholar 

  63. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp 818–833. https://doi.org/10.1007/978-3-319-10590-1_53

Download references

Acknowledgements

This paper is supported by the Project of Science and Technology of Henan (No. 232102210049), the Science and Technology Foundation of Guizhou Province (Nos. QKHJC[2020]1Y253, QKHJC-ZK[2022]YB024), the Higher Education Teaching Reform Research and Practice Project of Henan (No. 2021SJGLX271), the third batch of First class undergraduate courses in Henan Province “Information Theory and Coding” (Department of Higher Education[2022], No. 324), the first batch of Undergraduate college curriculum ideological and political model course in Henan Province “Information Theory and Coding” (Department of Higher Education[2020], No. 531), and the Research Start-up Foundation of Dr. Song Jianqiang (No. BSJ2022026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Song.

Ethics declarations

Conflicts of interest

The authors declare that they have not any potential or pertinent conflicts which could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Liu, Z., Xie, C. et al. Relaxed support vector based dictionary learning for image classification. Multimed Tools Appl 83, 12731–12755 (2024). https://doi.org/10.1007/s11042-023-15907-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15907-8

Keywords

Navigation