Skip to main content
Log in

Inter-reflection compensation for immersive projection display

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To ensure high-quality multi-projection display and fast projection scattering compensation processing, we propose a novel inter-reflection compensation algorithm for an immersive multi-projection system. Firstly, manual adjustment of projector image content can be a complex task. Therefore, we propose a multi-projection distortion correction method using color-structured light coding, which establishes a geometric mapping relationship between the projector and the display screen. This mapping relationship is then utilized to correct the distortion of the projection display screen. Secondly, the luminescence scattering between adjacent projection screens can result in color and brightness discrepancies. To address this issue, we propose a luminescence cross-scatter compensation algorithm for immersive multi-projection systems. Furthermore, through experiments, we demonstrate the effectiveness of our approach in compensating for inter-reflection. Our results indicate that our method effectively mitigates light scattering and achieves high levels of visual fidelity and resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nomoto, T., Li, W., Peng, H.-L., Watanabe, Y.: Dynamic multi-projection mapping based on parallel intensity control. IEEE Transactions on Visualization and Computer Graphics 28(5), 2125–2134 (2022)

    Article  Google Scholar 

  2. Huang, B., Tang, Y., Ozdemir, S., Ling, H.: A fast and flexible projector-camera calibration system. IEEE Transactions on Automation Science and Engineering 18(3), 1049–1063 (2020)

    Article  Google Scholar 

  3. Huang, B., Ling, H.: Compennet++: End-to-end full projector compensation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7165–7174 (2019)

  4. Kurth, P., Leuschner, M., Stamminger, M., Bauer, F.: Content-aware brightness solving and error mitigation in large-scale multi-projection mapping. IEEE Transactions on Visualization and Computer Graphics 28(11), 3607–3617 (2022)

    Article  Google Scholar 

  5. Tehrani, M.A., Gopi, M., Majumder, A.: Automated geometric registration for multi-projector displays on arbitrary 3d shapes using uncalibrated devices. IEEE transactions on visualization and computer graphics 27(4), 2265–2279 (2019)

    Article  Google Scholar 

  6. Breitkreutz, C., Brade, J., Winkler, S., Bendixen, A., Klimant, P., Jahn, G.: Spatial updating in virtual reality–auditory and visual cues in a cave automatic virtual environment. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 719–727 (2022). IEEE

  7. Hatfield, H.R., Ahn, S.J., Klein, M., Nowak, K.L.: Confronting whiteness through virtual humans: a review of 20 years of research in prejudice and racial bias using virtual environments. Journal of Computer-Mediated Communication 27(6), 016 (2022)

    Article  Google Scholar 

  8. Mondragón Bernal, I.F., Lozano-Ramírez, N.E., Puerto Cortés, J.M., Valdivia, S., Muñoz, R., Aragón, J., García, R., Hernández, G.: An immersive virtual reality training game for power substations evaluated in terms of usability and engagement. Applied Sciences 12(2), 711 (2022)

    Article  Google Scholar 

  9. Martirosov, S., Bureš, M., Zítka, T.: Cyber sickness in low-immersive, semi-immersive, and fully immersive virtual reality. Virtual Reality 26(1), 15–32 (2022)

    Article  Google Scholar 

  10. Krokos, E., Varshney, A.: Quantifying vr cybersickness using eeg. Virtual Reality 26(1), 77–89 (2022)

    Article  Google Scholar 

  11. Drechsler, M.F., Peintner, J., Reway, F., Seifert, G., Riener, A., Huber, W.: Mire, a mixed reality environment for testing of automated driving functions. IEEE Transactions on Vehicular Technology 71(4), 3443–3456 (2022)

    Article  Google Scholar 

  12. Chukwuani, V.N.: Virtual reality and augmented reality: Its impact in the field of accounting. Journal of Management 4(2), 35–42 (2022)

    Google Scholar 

  13. Alnagrat, A., Ismail, R.C., Idrus, S.Z.S., Alfaqi, R.M.A.: A review of extended reality (xr) technologies in the future of human education: Current trend and future opportunity. Journal of Human Centered Technology 1(2), 81–96 (2022)

    Article  Google Scholar 

  14. Marcelo de Paiva Guimarães, M., Martins, J.M., Dias, D.R.C., Guimarães, R.d.F.R., Gnecco, B.B.: An olfactory display for virtual reality glasses. Multimedia Systems 28(5), 1573–1583 (2022)

  15. Huang, B., Ling, H.: End-to-end projector photometric compensation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6810–6819 (2019)

  16. Zheng, F., Schubert, R., Weich, G.: A general approach for closed-loop registration in ar. In: 2013 IEEE Virtual Reality (VR), pp. 47–50 (2013)

  17. Saakes, D., Yeo, H.-S., Noh, S.-T., Han, G., Woo, W.: Mirror mirror: An on-body t-shirt design system. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 6058–6063 (2016)

  18. Zhou, Y., Xiao, S., Tang, N., Wei, Z., Chen, X.: Pmomo: Projection mapping on movable 3d object. In: Proceedings Of The 2016 CHI Conference on Human Factors in Computing Systems, pp. 781–790 (2016)

  19. Fujimoto, Y., Yamamoto, G., Taketomi, T., Sandor, C., Kato, H.: Pseudo printed fabrics through projection mapping. In: 2015 IEEE International Symposium on Mixed and Augmented Reality, pp. 174–175 (2015)

  20. Siegl, C., Colaianni, M., Stamminger, M., Bauer, F.: Adaptive stray-light compensation in dynamic multi-projection mapping. Computational Visual Media 3, 263–271 (2017)

    Article  Google Scholar 

  21. Jones, B.R., Benko, H., Ofek, E., Wilson, A.D.: Illumiroom: peripheral projected illusions for interactive experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 869–878 (2013)

  22. Jones, B., Sodhi, R., Murdock, M., Mehra, R., Benko, H., Wilson, A., Ofek, E., MacIntyre, B., Raghuvanshi, N., Shapira, L.: Roomalive: Magical experiences enabled by scalable, adaptive projector-camera units. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 637–644 (2014)

  23. Mazikowski, A.: Analysis of luminance distribution uniformity in cave-type virtual reality systems. Opto-Electronics Review 26(2), 116–121 (2018)

    Article  Google Scholar 

  24. Sheng, Y., Cutler, B., Chen, C., Nasman, J.: Perceptual global illumination cancellation in complex projection environments. In: Computer Graphics Forum, vol. 30, pp. 1261–1268 (2011)

  25. Li, Y., Yuan, Q., Lu, D.: Perceptual radiometric compensation for inter-reflection in immersive projection environment. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, pp. 201–208 (2013)

  26. Takeda, S., Iwai, D., Sato, K.: Inter-reflection compensation of immersive projection display by spatio-temporal screen reflectance modulation. IEEE transactions on visualization and computer graphics 22(4), 1424–1431 (2016)

    Article  Google Scholar 

  27. Steimle, J., Jordt, A., Maes, P.: Flexpad: highly flexible bending interactions for projected handheld displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 237–246 (2013)

  28. Huang, T.-H., Wang, T.-C., Chen, H.H.: Radiometric compensation of images projected on non-white surfaces by exploiting chromatic adaptation and perceptual anchoring. IEEE Transactions on Image Processing 26(1), 147–159 (2016)

    Article  Google Scholar 

  29. Mukaigawa, Y., Kakinuma, T., Ohta, Y.: Analytical compensation of inter-reflection for pattern projection. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 265–268 (2006)

  30. Miyagawa, I., Kinebuchi, T.: Compressive inverse light transport for radiometric compensation in projection-based displays. ITE Transactions on Media Technology and Applications 5(3), 96–109 (2017)

    Article  Google Scholar 

  31. Wang, X., Yan, K.: Automatic color correction for multi-projector display systems. Multimedia Tools and Applications 77, 13115–13132 (2018)

    Article  Google Scholar 

  32. Portalés, C., Orduna, J.M., Morillo, P., Gimeno, J.: An efficient projector calibration method for projecting virtual reality on cylindrical surfaces. Multimedia Tools and Applications 78, 1457–1471 (2019)

    Article  Google Scholar 

  33. Xue, Y.-T., Chen, Y.-J., Jiang, M.: Geometric calibration based on b-spline with multi-parameter and color correction based on transition template and decay function. Multimedia Tools and Applications 79, 4333–4346 (2020)

    Article  Google Scholar 

  34. Sugimoto, M., Iwai, D., Ishida, K., Punpongsanon, P., Sato, K.: Directionally decomposing structured light for projector calibration. IEEE Transactions on Visualization and Computer Graphics 27(11), 4161–4170 (2021)

    Article  Google Scholar 

  35. Jadhav, S., Kaufman, A.E.: Md-cave: An immersive visualization workbench for radiologists. IEEE Transactions on Visualization & Computer Graphics (01), 1–12 (2022)

    Google Scholar 

  36. Lebiedź, J., Mazikowski, A.: Multiuser stereoscopic projection techniques for cave-type virtual reality systems. IEEE Transactions on Human-Machine Systems 51(5), 535–543 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 62002156, 61973151, 62002155), the Natural Science Foundation of Jiangsu Province (BK20191406), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB520035), the Key Research & Development Plan of Jiangsu Province (BE2021001-4), and ’Qing Lan’ Project of Jiangsu Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Ding, X., Liu, Y. et al. Inter-reflection compensation for immersive projection display. Multimed Tools Appl 83, 10427–10443 (2024). https://doi.org/10.1007/s11042-023-15973-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15973-y

Keywords

Navigation