Abstract
Squamous cell carcinoma (SCC) is one of the most common as well as deadliest kinds of laryngeal cancer. The precise and early identification of laryngeal cancer plays a pivotal role in reducing mortality and maintaining laryngeal structure and vocal fold function. But small variations in the laryngeal tissues may go undetected by the human eye, which leads to misdiagnosis. In this study, we devise an early laryngeal cancer classification framework using the hybridization of deep and handcrafted features. The deep features of the DenseNet 201 using transfer learning and handcrafted features using Local Binary Pattern (LBP) and First-order statistics (STAT)s are extracted from the endoscopic narrowband images of the larynx and fused together which resulted in more representative features. From these hybridized features, the optimal features are selected by the Recursive Feature Elimination with Random Forest (RFE- RF) method. Firstly, the selected hybrid features are classified with three effective Machine Learning classifiers like Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbor (k-NN), and the results are compared with a stacking-based ensemble learning classification method using (SVM), (RF) and (k-NN) in order to distinguish early-stage SCC tissues, healthy tissues and precancerous tissues. The combination of hybrid features, effective feature selection, and an Ensemble classifier produced a median categorization recall of 99.5% on a standard dataset, which surpasses the state of the art (recall = 98%).
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig19_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-023-16077-3/MediaObjects/11042_2023_16077_Fig20_HTML.png)
Similar content being viewed by others
Data availability
Data analyzed during the current study are openly available at location cited in the reference section [37]. The URL of data source: https://zenodo.org/record/1003200#.YueQRXZBxPY
References
Ali M, Gupta G, Silu M, Chand D, Samor V (2021) Narrow band imaging in early diagnosis of laryngopharyngeal malignant and premalignant lesions. Auris Nasus Larynx. https://doi.org/10.1016/j.anl.2021.11.008
Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging 35(5):1207–1216. https://doi.org/10.1109/TMI.2016.2535865
Araújo T, Santos CP, De Momi E, Moccia S (2019) Learned and handcrafted features for early-stage laryngeal SCC diagnosis. Med Biol Eng Comput 57(12):2683–2692. https://doi.org/10.1007/s11517-019-02051-5
Arun Prakash J, Asswin C, Ravi V, Sowmya V, Soman K (2022) Pediatric pneumonia diagnosis using stacked ensemble learning on multi-model deep CNN architectures. Multimed Tools Appl https://doi.org/10.1007/s11042-022-13844-6.
Barbalata C, Mattos LS (2016) Laryngeal tumor detection and classification in endoscopic video. IEEE J Biomed Heal Informatics 20(1):322–332. https://doi.org/10.1109/JBHI.2014.2374975
Bellmann P, Thiam P, Schwenker F (2018) Multi-classifier-Systems: architectures, algorithms and applications. In Studies in Computational Intelligence. 777
Bethanney J, Umashankar G, Divakaran S, Shelcy S, Jo M, Basilica SN (2018) Classification of cervical cancer from MRI images using multiclass SVM classifier. Int J Eng Technol, 7,(2):1. https://doi.org/10.14419/ijet.v7i2.25.12351.
Boongoen T, Iam-On N (2018) Cluster ensembles: A survey of approaches with recent extensions and applications. Comput Sci Rev. 28:1–25. https://doi.org/10.1016/j.cosrev.2018.01.003
Bosetti C et al (2002) Cancer of the larynx in non-smoking alcohol drinkers and in non-drinking tobacco smokers. Br J Cancer 87(5):516–518. https://doi.org/10.1038/sj.bjc.6600469
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492
Cho WK et al (2021) Diagnostic Accuracies of Laryngeal Diseases Using a Convolutional Neural Network-Based Image Classification System. Laryngoscope 131(11):2558–2566. https://doi.org/10.1002/lary.29595
Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints (Cited by: 1590). Earth. 1
Cunningham P, Delany SJ (2021) K-Nearest Neighbour Classifiers-A Tutorial ACM Computing Surveys. Assoc Comput Mach 54(6):1–25. https://doi.org/10.1145/3459665
Deepak S, Ameer PM (2020) Automated Categorization of Brain Tumor from MRI Using CNN features and SVM. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02568-w
Duran-Lopez L, Dominguez-Morales JP, Conde-Martin AF, Vicente-Diaz S, Linares-Barranco A (2020) PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection”. IEEE Access 8:128613–128628. https://doi.org/10.1109/ACCESS.2020.3008868
Esteva A et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/10.1038/nature21056
Faußer S, Schwenker F (2015) Neural Network Ensembles in Reinforcement Learning. Neural Process Lett 41(1):55–69. https://doi.org/10.1007/s11063-013-9334-5
Fekri-Ershad S (2018) Pap smear classification using combination of global significant value, texture statistical features and time series features. Multimed Tools Appl 78(22):10853–10866. https://doi.org/10.1007/s11042-019-07937-y
Hameed Z, Zahia S, Garcia-Zapirain B, Aguirre JJ, Vanegas AM (2020) Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors (Switzerland) 20(16):4373. https://doi.org/10.3390/s20164373
Hasan MK, Alam MA, Das D, Hossain E, Hasan M (2020) Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 8:76516–76531. https://doi.org/10.1109/ACCESS.2020.2989857
Hsieh SL et al (2012) Design ensemble machine learning model for breast cancer diagnosis. J Med Syst 36(5):2841–2847. https://doi.org/10.1007/s10916-011-9762-6
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks,” In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243.
Huang P, Tan X, Chen C, Lv X, Li Y (2020) AF-SENet: Classification of cancer in cervical tissue pathological images based on fusing deep convolution features”. Sensors (Switzerland) 21(1):122. https://doi.org/10.3390/s21010122
Irem Turkmen H, ElifKarsligil M, Kocak I (2015) Classification of laryngeal disorders based on shape and vascular defects of vocal folds. Comput Biol Med 62:76–85. https://doi.org/10.1016/j.compbiomed.2015.02.001
Jadhav SB, Udupi VR, Patil SB (2019) Soybean leaf disease detection and severity measurement using multiclass SVM and KNN classifier. Int J Electr Comput Eng 9(5):4092–4098. https://doi.org/10.11591/ijece.v9i5.pp4077-4091
Kächele M, Thiam P, Palm G, Schwenker F, Schels M (2015) Ensemble methods for continuous affect recognition: Multi-modality, temporality, and challenges. https://doi.org/10.1145/2808196.2811637.
Kanavati F et al., (2020) Weakly-supervised learning for lung carcinoma classification using deep learning. Sci Rep 10,(1). https://doi.org/10.1038/s41598-020-66333-x.
Kraft M, Fostiropoulos K, Gürtler N, Arnoux A, Davaris N, Arens C (2016) Value of narrow band imaging in the early diagnosis of laryngeal cancer. Head Neck 38(1):15–20. https://doi.org/10.1002/hed.23838
Kumar G, Bhatia PK (2014) A detailed review of feature extraction in image processing systems. https://doi.org/10.1109/ACCT.2014.74.
Lan R, Zhong S, Liu Z, Shi Z, Luo X (2022) A simple texture feature for retrieval of medical images. Multimed. Tools Appl 77(9):21311–21351. https://doi.org/10.1007/s11042-017-5341-2
Liang P, Cong Y, Guan M (2012) A computer-aided lesion diagnose method based on gastroscopeimage. https://doi.org/10.1109/ICInfA.2012.6246904
Lin Y et al., (2011) Large-scale image classification: Fast feature extraction and SVM training. https://doi.org/10.1109/CVPR.2011.5995477.
Lin K, Cheng DLP, Huang Z (2012) Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy. Biosens Bioelectron 35(1):213–217. https://doi.org/10.1016/j.bios.2012.02.050
Markou K et al (2013) Laryngeal cancer: Epidemiological data from Northern Greece and review of the literature. Hippokratia 17(4):313–8
Misawa M et al (2017) Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. Int J Comput Assist Radiol Surg 12(5):757–766. https://doi.org/10.1007/s11548-017-1542-4
Moccia S et al (2018) Learning-based classification of informative laryngoscopic frames. Comput Methods Programs Biomed 158:21–30. https://doi.org/10.1016/j.cmpb.2018.01.030
Moccia M, De Momi E, Mattos LS (2017) Laryngeal dataset Zenodo. 10.5281/zenodo.1003200
Moccia S, De Momi E, Guarnaschelli M, Savazzi M, Laborai A (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(03):1. https://doi.org/10.1117/1.jmi.4.3.034502
Moccia S, Penza V, Vanone GO, De Momi E, Mattos LS (2016) Automatic workflow for narrow-band laryngeal video stitching. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016. https://doi.org/10.1109/EMBC.2016.7590917.
Nannia L, Ghidoni S, Brahnam S (2020) Ensemble of convolutional neural networks for bioimage classification”. Appl Comput Informatics 17(1):19–35. https://doi.org/10.1016/j.aci.2018.06.002
Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):51–59. https://doi.org/10.1016/0031-3203(95)00067-4
Patrini I, Ruperti M, Moccia S, Mattos LS, Frontoni E, De Momi E (2020) Transfer learning for informative-frame selection in laryngoscopic videos through learned features. Med Biol Eng Comput 58(6):1225–1238. https://doi.org/10.1007/s11517-020-02127-7
Piazza C, Del Bon F, Peretti G, Nicolai P (2012) Narrow band imaging in endoscopic evaluation of the larynx. Curr Opin Otolaryngol 20(6):472–476. https://doi.org/10.1097/MOO.0b013e32835908ac
Popek B, Bojanowska-Poźniak K, Tomasik B, Fendler W, Jeruzal-Świątecka J, Pietruszewska W (2019) Clinical experience of narrow band imaging (NBI) usage in diagnosis of laryngeal lesions. Otolaryngol Pol 73(6):18–23. https://doi.org/10.5604/01.3001.0013.3401
Poplin R et al (2018) Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning”. Nat Biomed Eng 2(3):158–164. https://doi.org/10.1038/s41551-018-0195-0
SaranyaJothi C, Usha V, David SA, Mohammed H (2018) Abnormality classification of brain tumor in MRI images using multiclass SVM. Res J Pharm Technol 11(3):851–856. https://doi.org/10.5958/0974-360X.2018.00158.0
Schwenker F, Dietrich CR, Thiel C, Palm G (2006) Learning of decision fusion mappings for pattern recognition
Shankar K, Perumal E (2021) A novel hand-crafted with deep learning features based fusion model for COVID-19 diagnosis and classification using chest X-ray images. Complex Intell Syst 7(3):1277–1293. https://doi.org/10.1007/s40747-020-00216-6
Sharmila J, Vidyarthi A, Sing PV (2022) Multiclass Image Classification using OAA-SVM. Algorithms Intell Syst.https://doi.org/10.1007/978-981-16-9650-3_18
Shen X, Sun K, Zhang S, Cheng S (2012) Lesion detection of electronic gastroscope images based on multiscale texture feature. https://doi.org/10.1109/ICSPCC.2012.6335638.
Singh VP, Maurya AK (2021) Role of Machine Learning and Texture Features for the Diagnosis of Laryngeal Cancer. In Machine Learning for Healthcare Applications, Wiley, pp. 353–367
Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images”. IEEE Trans Med Imaging 35(5):1196–1206. https://doi.org/10.1109/TMI.2016.2525803
Sommen van der F, Zinger S, Schoon EJ, de With PHN (2013) Computer-aided detection of early cancer in the esophagus using HD endoscopy images,” In Medical Imaging 2013: Computer-Aided Diagnosis. 8670. https://doi.org/10.1117/12.2001068.
Unger J, Lohscheller J, Reiter M, Eder K, Betz CS, Schuster M (2015) A noninvasive procedure for early-stage discrimination of malignant and precancerous vocal fold lesions based on laryngeal dynamics analysis. Cancer Res 75(1):31–39. https://doi.org/10.1158/0008-5472.CAN-14-1458
Wu Y, Zhang A (2004) Feature selection for classifying high-dimensional numerical data. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2, https://doi.org/10.1109/cvpr.2004.1315171.
Xu Y, Jia Z, Ai Y, Zhang F, Lai M, Chang EIC (2015) Deep convolutional activation features for large scale Brain Tumor histopathology image classification and segmentation. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2015. https://doi.org/10.1109/ICASSP.2015.7178109.
Zhang Y et al (2017) Tissue classification for laparoscopic image understanding based on multispectral texture analysis”. J Med Imaging 4(1):015001. https://doi.org/10.1117/1.jmi.4.1.015001
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical approval
This study is the authors' own original work, which has not been previously published elsewhere.
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Joseph, J.S., Vidyarthi, A. & Singh, V.P. An improved approach for initial stage detection of laryngeal cancer using effective hybrid features and ensemble learning method. Multimed Tools Appl 83, 17897–17919 (2024). https://doi.org/10.1007/s11042-023-16077-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-023-16077-3