Skip to main content

Advertisement

Log in

An improved approach for initial stage detection of laryngeal cancer using effective hybrid features and ensemble learning method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Squamous cell carcinoma (SCC) is one of the most common as well as deadliest kinds of laryngeal cancer. The precise and early identification of laryngeal cancer plays a pivotal role in reducing mortality and maintaining laryngeal structure and vocal fold function. But small variations in the laryngeal tissues may go undetected by the human eye, which leads to misdiagnosis. In this study, we devise an early laryngeal cancer classification framework using the hybridization of deep and handcrafted features. The deep features of the DenseNet 201 using transfer learning and handcrafted features using Local Binary Pattern (LBP) and First-order statistics (STAT)s are extracted from the endoscopic narrowband images of the larynx and fused together which resulted in more representative features. From these hybridized features, the optimal features are selected by the Recursive Feature Elimination with Random Forest (RFE- RF) method. Firstly, the selected hybrid features are classified with three effective Machine Learning classifiers like Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbor (k-NN), and the results are compared with a stacking-based ensemble learning classification method using (SVM), (RF) and (k-NN) in order to distinguish early-stage SCC tissues, healthy tissues and precancerous tissues. The combination of hybrid features, effective feature selection, and an Ensemble classifier produced a median categorization recall of 99.5% on a standard dataset, which surpasses the state of the art (recall = 98%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data analyzed during the current study are openly available at location cited in the reference section [37]. The URL of data source: https://zenodo.org/record/1003200#.YueQRXZBxPY

References

  1. Ali M, Gupta G, Silu M, Chand D, Samor V (2021) Narrow band imaging in early diagnosis of laryngopharyngeal malignant and premalignant lesions. Auris Nasus Larynx. https://doi.org/10.1016/j.anl.2021.11.008

    Article  Google Scholar 

  2. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging 35(5):1207–1216. https://doi.org/10.1109/TMI.2016.2535865

    Article  Google Scholar 

  3. Araújo T, Santos CP, De Momi E, Moccia S (2019) Learned and handcrafted features for early-stage laryngeal SCC diagnosis. Med Biol Eng Comput 57(12):2683–2692. https://doi.org/10.1007/s11517-019-02051-5

    Article  Google Scholar 

  4. Arun Prakash J, Asswin C, Ravi V, Sowmya V, Soman K (2022) Pediatric pneumonia diagnosis using stacked ensemble learning on multi-model deep CNN architectures. Multimed Tools Appl https://doi.org/10.1007/s11042-022-13844-6.

  5. Barbalata C, Mattos LS (2016) Laryngeal tumor detection and classification in endoscopic video. IEEE J Biomed Heal Informatics 20(1):322–332. https://doi.org/10.1109/JBHI.2014.2374975

    Article  Google Scholar 

  6. Bellmann P, Thiam P, Schwenker F (2018) Multi-classifier-Systems: architectures, algorithms and applications. In Studies in Computational Intelligence. 777

  7. Bethanney J, Umashankar G, Divakaran S, Shelcy S, Jo M, Basilica SN (2018) Classification of cervical cancer from MRI images using multiclass SVM classifier. Int J Eng Technol, 7,(2):1. https://doi.org/10.14419/ijet.v7i2.25.12351.

  8. Boongoen T, Iam-On N (2018) Cluster ensembles: A survey of approaches with recent extensions and applications. Comput Sci Rev. 28:1–25. https://doi.org/10.1016/j.cosrev.2018.01.003

    Article  MathSciNet  Google Scholar 

  9. Bosetti C et al (2002) Cancer of the larynx in non-smoking alcohol drinkers and in non-drinking tobacco smokers. Br J Cancer 87(5):516–518. https://doi.org/10.1038/sj.bjc.6600469

    Article  Google Scholar 

  10. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  11. Cho WK et al (2021) Diagnostic Accuracies of Laryngeal Diseases Using a Convolutional Neural Network-Based Image Classification System. Laryngoscope 131(11):2558–2566. https://doi.org/10.1002/lary.29595

    Article  Google Scholar 

  12. Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints (Cited by: 1590). Earth. 1

  13. Cunningham P, Delany SJ (2021) K-Nearest Neighbour Classifiers-A Tutorial ACM Computing Surveys. Assoc Comput Mach 54(6):1–25. https://doi.org/10.1145/3459665

    Article  Google Scholar 

  14. Deepak S, Ameer PM (2020) Automated Categorization of Brain Tumor from MRI Using CNN features and SVM. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02568-w

    Article  Google Scholar 

  15. Duran-Lopez L, Dominguez-Morales JP, Conde-Martin AF, Vicente-Diaz S, Linares-Barranco A (2020) PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection”. IEEE Access 8:128613–128628. https://doi.org/10.1109/ACCESS.2020.3008868

    Article  Google Scholar 

  16. Esteva A et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  17. Faußer S, Schwenker F (2015) Neural Network Ensembles in Reinforcement Learning. Neural Process Lett 41(1):55–69. https://doi.org/10.1007/s11063-013-9334-5

    Article  Google Scholar 

  18. Fekri-Ershad S (2018) Pap smear classification using combination of global significant value, texture statistical features and time series features. Multimed Tools Appl 78(22):10853–10866. https://doi.org/10.1007/s11042-019-07937-y

    Article  Google Scholar 

  19. Hameed Z, Zahia S, Garcia-Zapirain B, Aguirre JJ, Vanegas AM (2020) Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors (Switzerland) 20(16):4373. https://doi.org/10.3390/s20164373

    Article  Google Scholar 

  20. Hasan MK, Alam MA, Das D, Hossain E, Hasan M (2020) Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 8:76516–76531. https://doi.org/10.1109/ACCESS.2020.2989857

    Article  Google Scholar 

  21. Hsieh SL et al (2012) Design ensemble machine learning model for breast cancer diagnosis. J Med Syst 36(5):2841–2847. https://doi.org/10.1007/s10916-011-9762-6

    Article  Google Scholar 

  22. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks,” In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243.

  23. Huang P, Tan X, Chen C, Lv X, Li Y (2020) AF-SENet: Classification of cancer in cervical tissue pathological images based on fusing deep convolution features”. Sensors (Switzerland) 21(1):122. https://doi.org/10.3390/s21010122

    Article  Google Scholar 

  24. Irem Turkmen H, ElifKarsligil M, Kocak I (2015) Classification of laryngeal disorders based on shape and vascular defects of vocal folds. Comput Biol Med 62:76–85. https://doi.org/10.1016/j.compbiomed.2015.02.001

    Article  Google Scholar 

  25. Jadhav SB, Udupi VR, Patil SB (2019) Soybean leaf disease detection and severity measurement using multiclass SVM and KNN classifier. Int J Electr Comput Eng 9(5):4092–4098. https://doi.org/10.11591/ijece.v9i5.pp4077-4091

    Article  Google Scholar 

  26. Kächele M, Thiam P, Palm G, Schwenker F, Schels M (2015) Ensemble methods for continuous affect recognition: Multi-modality, temporality, and challenges. https://doi.org/10.1145/2808196.2811637.

  27. Kanavati F et al., (2020) Weakly-supervised learning for lung carcinoma classification using deep learning. Sci Rep 10,(1). https://doi.org/10.1038/s41598-020-66333-x.

  28. Kraft M, Fostiropoulos K, Gürtler N, Arnoux A, Davaris N, Arens C (2016) Value of narrow band imaging in the early diagnosis of laryngeal cancer. Head Neck 38(1):15–20. https://doi.org/10.1002/hed.23838

    Article  Google Scholar 

  29. Kumar G, Bhatia PK (2014) A detailed review of feature extraction in image processing systems. https://doi.org/10.1109/ACCT.2014.74.

  30. Lan R, Zhong S, Liu Z, Shi Z, Luo X (2022) A simple texture feature for retrieval of medical images. Multimed. Tools Appl 77(9):21311–21351. https://doi.org/10.1007/s11042-017-5341-2

    Article  Google Scholar 

  31. Liang P, Cong Y, Guan M (2012) A computer-aided lesion diagnose method based on gastroscopeimage. https://doi.org/10.1109/ICInfA.2012.6246904

  32. Lin Y et al., (2011) Large-scale image classification: Fast feature extraction and SVM training. https://doi.org/10.1109/CVPR.2011.5995477.

  33. Lin K, Cheng DLP, Huang Z (2012) Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy. Biosens Bioelectron 35(1):213–217. https://doi.org/10.1016/j.bios.2012.02.050

    Article  Google Scholar 

  34. Markou K et al (2013) Laryngeal cancer: Epidemiological data from Northern Greece and review of the literature. Hippokratia 17(4):313–8

    Google Scholar 

  35. Misawa M et al (2017) Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. Int J Comput Assist Radiol Surg 12(5):757–766. https://doi.org/10.1007/s11548-017-1542-4

    Article  Google Scholar 

  36. Moccia S et al (2018) Learning-based classification of informative laryngoscopic frames. Comput Methods Programs Biomed 158:21–30. https://doi.org/10.1016/j.cmpb.2018.01.030

    Article  Google Scholar 

  37. Moccia M, De Momi E, Mattos LS (2017) Laryngeal dataset Zenodo. 10.5281/zenodo.1003200

  38. Moccia S, De Momi E, Guarnaschelli M, Savazzi M, Laborai A (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(03):1. https://doi.org/10.1117/1.jmi.4.3.034502

    Article  Google Scholar 

  39. Moccia S, Penza V, Vanone GO, De Momi E, Mattos LS (2016) Automatic workflow for narrow-band laryngeal video stitching. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016. https://doi.org/10.1109/EMBC.2016.7590917.

  40. Nannia L, Ghidoni S, Brahnam S (2020) Ensemble of convolutional neural networks for bioimage classification”. Appl Comput Informatics 17(1):19–35. https://doi.org/10.1016/j.aci.2018.06.002

    Article  Google Scholar 

  41. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):51–59. https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  42. Patrini I, Ruperti M, Moccia S, Mattos LS, Frontoni E, De Momi E (2020) Transfer learning for informative-frame selection in laryngoscopic videos through learned features. Med Biol Eng Comput 58(6):1225–1238. https://doi.org/10.1007/s11517-020-02127-7

    Article  Google Scholar 

  43. Piazza C, Del Bon F, Peretti G, Nicolai P (2012) Narrow band imaging in endoscopic evaluation of the larynx. Curr Opin Otolaryngol 20(6):472–476. https://doi.org/10.1097/MOO.0b013e32835908ac

    Article  Google Scholar 

  44. Popek B, Bojanowska-Poźniak K, Tomasik B, Fendler W, Jeruzal-Świątecka J, Pietruszewska W (2019) Clinical experience of narrow band imaging (NBI) usage in diagnosis of laryngeal lesions. Otolaryngol Pol 73(6):18–23. https://doi.org/10.5604/01.3001.0013.3401

    Article  Google Scholar 

  45. Poplin R et al (2018) Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning”. Nat Biomed Eng 2(3):158–164. https://doi.org/10.1038/s41551-018-0195-0

    Article  Google Scholar 

  46. SaranyaJothi C, Usha V, David SA, Mohammed H (2018) Abnormality classification of brain tumor in MRI images using multiclass SVM. Res J Pharm Technol 11(3):851–856. https://doi.org/10.5958/0974-360X.2018.00158.0

    Article  Google Scholar 

  47. Schwenker F, Dietrich CR, Thiel C, Palm G (2006) Learning of decision fusion mappings for pattern recognition

  48. Shankar K, Perumal E (2021) A novel hand-crafted with deep learning features based fusion model for COVID-19 diagnosis and classification using chest X-ray images. Complex Intell Syst 7(3):1277–1293. https://doi.org/10.1007/s40747-020-00216-6

    Article  Google Scholar 

  49. Sharmila J, Vidyarthi A, Sing PV (2022) Multiclass Image Classification using OAA-SVM. Algorithms Intell Syst.https://doi.org/10.1007/978-981-16-9650-3_18

  50. Shen X, Sun K, Zhang S, Cheng S (2012) Lesion detection of electronic gastroscope images based on multiscale texture feature. https://doi.org/10.1109/ICSPCC.2012.6335638.

  51. Singh VP, Maurya AK (2021) Role of Machine Learning and Texture Features for the Diagnosis of Laryngeal Cancer. In Machine Learning for Healthcare Applications, Wiley, pp. 353–367

  52. Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images”. IEEE Trans Med Imaging 35(5):1196–1206. https://doi.org/10.1109/TMI.2016.2525803

    Article  Google Scholar 

  53. Sommen van der F, Zinger S, Schoon EJ, de With PHN (2013) Computer-aided detection of early cancer in the esophagus using HD endoscopy images,” In Medical Imaging 2013: Computer-Aided Diagnosis. 8670. https://doi.org/10.1117/12.2001068.

  54. Unger J, Lohscheller J, Reiter M, Eder K, Betz CS, Schuster M (2015) A noninvasive procedure for early-stage discrimination of malignant and precancerous vocal fold lesions based on laryngeal dynamics analysis. Cancer Res 75(1):31–39. https://doi.org/10.1158/0008-5472.CAN-14-1458

    Article  Google Scholar 

  55. Wu Y, Zhang A (2004) Feature selection for classifying high-dimensional numerical data. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2, https://doi.org/10.1109/cvpr.2004.1315171.

  56. Xu Y, Jia Z, Ai Y, Zhang F, Lai M, Chang EIC (2015) Deep convolutional activation features for large scale Brain Tumor histopathology image classification and segmentation. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2015. https://doi.org/10.1109/ICASSP.2015.7178109.

  57. Zhang Y et al (2017) Tissue classification for laparoscopic image understanding based on multispectral texture analysis”. J Med Imaging 4(1):015001. https://doi.org/10.1117/1.jmi.4.1.015001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Vidyarthi.

Ethics declarations

Ethical approval

This study is the authors' own original work, which has not been previously published elsewhere.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J.S., Vidyarthi, A. & Singh, V.P. An improved approach for initial stage detection of laryngeal cancer using effective hybrid features and ensemble learning method. Multimed Tools Appl 83, 17897–17919 (2024). https://doi.org/10.1007/s11042-023-16077-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16077-3

Keywords

Navigation