Skip to main content
Log in

Improved adaptive reversible watermarking in integer wavelet transform using moth-flame optimization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With increasing connectivity, unprotected digital content is vulnerable to attacks and thus watermarking them is essential for copyright protection. This paper presents an effective adaptive reversible image watermarking. The approach utilizes the selection of optimal location for embedding according to entropy, where appropriate threshold for entropy selection is taken care by particle swarm optimization (PSO) algorithm. A technique in integer wavelet transform (IWT) domain is proposed, further discrete cosine transform (DCT) and singular value decomposition (SVD) is hybridized for embedding process in all the chosen blocks, and the Fractal encrypted watermark bits are integrated into coefficients of image using the average proximity coefficient. The embedding process is governed by optimal scale, which is adaptively generated by moth-flame optimization (MFO) according to specially designed fitness function. The proposed technique when evaluated using several standard indicators exhibited improved reliability, robustness, and imperceptibility in comparison to the existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Agarwal N, Singh AK, Singh PK (2019) Survey of robust and imperceptible watermarking. Multimed Tools Appl 78:8603–8633. https://doi.org/10.1007/s11042-018-7128-5

    Article  Google Scholar 

  2. Arsalan M, Malik SA, Khan A (2012) Intelligent reversible watermarking in integer wavelet domain for medical images. J Syst Softw 85(4):883–894. https://doi.org/10.1016/j.jss.2011.11.005

    Article  Google Scholar 

  3. Arsalan M, Qureshi AS, Khan A, Rajarajan M (2017) Protection of medical images and patient related information in healthcare: using an intelligent and reversible watermarking technique. Appl Soft Comput 51:168–179. https://doi.org/10.1016/j.asoc.2016.11.044

    Article  Google Scholar 

  4. Arunkumar S, Subramaniyaswamy V, Vijayakumar V, Chilamkurti N, Logesh R (2019) SVD-based robust image Steganographic scheme using RIWT and DCT for secure transmission of medical images. Measurement 139:426–437. https://doi.org/10.1016/j.measurement.2019.02.069

    Article  Google Scholar 

  5. Ayad H, Khalil M (2018) QAM-DWT-SVD based Watermarking Scheme for Medical Images. Int J Interact Multimed Artif Intell 5(3):81–89. https://doi.org/10.9781/ijimai.2018.01.001

    Article  Google Scholar 

  6. Balasamy K, Ramakrishnan S (2019) An intelligent reversible watermarking system for authenticating medical images using Wavelet and PSO. Cluster Comput 22(Suppl 2):4431–4442. https://doi.org/10.1007/s10586-018-1991-8

    Article  Google Scholar 

  7. Bhuyan HMK, Raihan MG (2017) A variance based approach (VBA) digital watermarking in frequency domain and comparative analysis using Walsh and Hadamard transform. Int J Comput Appl 975:8887. https://doi.org/10.5120/IJCA2017913725

    Article  Google Scholar 

  8. Borra S, Thanki R, Dey N (2018) Digital image watermarking theoretical and computational advances. CRC Press, Florida. https://doi.org/10.1201/9780429423291

    Article  Google Scholar 

  9. Chatterjee S, Hore S, Dey N, Chakraborty S, Ashour AS (2017) Dengue Fever Classification Using Gene Expression Data: A PSO Based Artificial Neural Network Approach. In: Satapathy, S., Bhateja, V., Udgata, S., Pattnaik, P. (eds) Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications. Advances in Intelligent Systems and Computing, vol 516. Springer, Singapore. https://doi.org/10.1007/978-981-10-3156-4_34

  10. Dey N, Roy AB, Dey S (2011) A novel approach of color image hiding using RGB color planes and DWT. Int J Comput Appl 36(5):19–24. https://doi.org/10.48550/arXiv.1208.0803

    Article  Google Scholar 

  11. Emad E, Safey A, Refaat A, Osama Z, Sayed E, Mohamed E (2018) A secure image steganography algorithm based on least significant bit and integer wavelet transform. J Syst Eng Electron 29(3):639–649. https://doi.org/10.21629/JSEE.2018.03.21

    Article  Google Scholar 

  12. Fang H, Zhou H, Ma Z, Zhang W, Yu N (2019) A robust image watermarking scheme in DCT domain based on adaptive texture direction quantization. Multimed Tools Appl 78:8075–8089. https://doi.org/10.1007/s11042-018-6596-y

    Article  Google Scholar 

  13. Gao W, Yang L, Zhang X (2010) An improved Sobel edge detection. In proceedings of 2010 3rd IEEE International conference on computer science and information technology, Chengdu, China, pp 67–71. IEEE. https://doi.org/10.1109/ICCSIT.2010.5563693

  14. Gujjunoori S, Oruganti M (2019) Difference expansion based reversible data embedding and edge detection. Multimed Tools Appl 78:25889–25917. https://doi.org/10.1007/s11042-019-07767-y

    Article  Google Scholar 

  15. Guo J-M, Prasetyo H (2014) False-positive-free SVD-based image watermarking. J Vis Commun Image Represent 25(5):1149–1163. https://doi.org/10.1016/j.jvcir.2014.03.012

    Article  Google Scholar 

  16. Heidari M, Karimi N, Samavi S (2016) A hybrid DCT-SVD based image watermarking algorithm. In 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz University, Iran, May 10 2016, p. 838–843. https://doi.org/10.1109/IranianCEE.2016.7585636

  17. Hou X, Min L, Yang H (2018) A reversible watermarking scheme for vector maps based on multilevel histogram modification. Symmetry 10(9):397. https://doi.org/10.3390/sym10090397

    Article  Google Scholar 

  18. Jain A, Bhatnagar V (2017) Concoction of ambient intelligence and big data for better patient ministration services. Int J Ambient Comput Intell (IJACI) 8(4):19–30. https://doi.org/10.4018/IJACI.2017100102

    Article  Google Scholar 

  19. Jimson N, Hemachandran K (2018) DFT Based Digital Image Watermarking: A Survey. Int J Adv Res Comput Sci 9(2):540–544. https://doi.org/10.26483/ijarcs.v9i2.5747

    Article  Google Scholar 

  20. Kapadia AM, Pandian N (2020) Reversible data hiding methods in integer wavelet transform. Int J Inf Comput Secur 12(1):70–89. https://doi.org/10.1504/IJICS.2020.104001

    Article  Google Scholar 

  21. Kaur P, Gupta S, Dhingra S, Sharma S, Arora A (2020) Towards content-dependent social media platform preference analysis. Int J Ambient Comput Intell (IJCAI) 11:30–47. https://doi.org/10.4018/IJACI.2020040102

    Article  Google Scholar 

  22. Kaw JA, Loan NA, Parah SA, Muhammad K, Sheikh JA, Bhat GM (2019) A reversible and secure patient information hiding system for IoT driven e-health. Int J Inf Manage 45:262–275. https://doi.org/10.1016/j.ijinfomgt.2018.09.008

    Article  Google Scholar 

  23. Kazemivash B, Moghaddam ME (2018) A predictive model-based image watermarking scheme using Regression Tree and Firefly algorithm. Soft Comput 22:4083–4098. https://doi.org/10.1007/s00500-017-2617-4

    Article  Google Scholar 

  24. Kulkarni R, Dinesh VS, Bhagya R, Bharathi R (2021) Difference expansion based reversible data hiding scheme for watermarking. Int J Res Eng Sci Manage 4(6):193–195

    Google Scholar 

  25. Lakshmi HR, Borra S (2021) Difference expansion based reversible watermarking algorithms for copyright protection of images: state-of-the-art and challenges. Int J Speech Technol 24(4):823–852. https://doi.org/10.1007/s10772-021-09818-y

    Article  Google Scholar 

  26. Li, Qi, Bin Yan, Hui Li, Jeng-Shyang Pan (2019) Reversible Watermarking Based on Adaptive Prediction Error Expansion. In: Pan, JS., Lin, JW., Sui, B., Tseng, SP. (eds) Genetic and Evolutionary Computing. ICGEC 2018. Advances in Intelligent Systems and Computing, vol 834. Springer, Singapore. https://doi.org/10.1007/978-981-13-5841-8_26

  27. Li Q, Yan B, Li H, Pan J-S (2019) Reversible Watermarking Based on Adaptive Prediction Error Expansion. In: Pan, JS., Lin, JW., Sui, B., Tseng, SP. (eds) Genetic and Evolutionary Computing. ICGEC 2018. Advances in Intelligent Systems and Computing, vol 834. Springer, Singapore, p 234–251. https://doi.org/10.1007/978-981-13-5841-8_26

  28. Li Y, Zhu X, Liu J (2020) An improved moth-flame optimization algorithm for engineering problems. Symmetry 12(8):1234. https://doi.org/10.3390/sym12081234

    Article  Google Scholar 

  29. Liao X, Li K, Xinshan Zhu KJ, Liu R (2020) Robust detection of image operator chain with two-stream convolutional neural network. IEEE J Sel Top Signal Process 14:955–968. https://doi.org/10.1109/JSTSP.2020.3002391

    Article  Google Scholar 

  30. Liao X, Yin J, Chen M, Qin Z (2020) Adaptive payload distribution in multiple images steganography based on image texture features. IEEE Trans Dependable Secure Comput 19(2):897–911. https://doi.org/10.1109/TDSC.2020.3004708

    Article  Google Scholar 

  31. Liao X, Yu Y, Li B, Li Z, Qin Z (2019) A new payload partition strategy in color image steganography. IEEE Trans Circuits Syst Vid Technol 30(3):685–696. https://doi.org/10.1109/TCSVT.2019.2896270

    Article  Google Scholar 

  32. Lin CC, Chang CC, Wang ZM (2019) Reversible data hiding scheme using adaptive block truncation coding based on an edge-based quantization approach. Symmetry 11:765. https://doi.org/10.3390/sym11060765

    Article  Google Scholar 

  33. Loukhaoukha K (2013) Comments on “A digital watermarking scheme based on singular value decomposition and tiny genetic algorithm.” Digital Signal Process 23(4):1334. https://doi.org/10.1016/j.dsp.2013.02.006

    Article  Google Scholar 

  34. Loukhaoukha K, Rafaey A, Zebbiche K (2017) Ambiguity attacks on robust blind image watermarking scheme based on redundant discrete wavelet transform and singular value decomposition. J Electric Syst Inform Technol 4(3):359–368. https://doi.org/10.1016/j.jesit.2016.12.011

    Article  Google Scholar 

  35. Loukhaoukha K, Refaey A, Zebbiche K (2016) Comment on “a robust color image watermarking with singular value decomposition method.” Adv Eng Softw 93:44–46. https://doi.org/10.1016/j.advengsoft.2015.12.006

    Article  Google Scholar 

  36. Loukhaoukha K, Refaey A, Zebbiche K (2016) Comments on" Homomorphic image watermarking with a singular value decomposition algorithm". Inf Process Manag 52(4):644–645. https://doi.org/10.1016/j.ipm.2015.12.009

    Article  Google Scholar 

  37. Loukhaoukha K, Refaey A, Zebbiche K, Nabti M (2015) On the security of robust image watermarking algorithm based on discrete wavelet transform, discrete cosine transform and singular value decomposition. Appl Math Inf Sci 9(3):1159–1166. https://doi.org/10.12785/amis/090307

    Article  Google Scholar 

  38. Makbol N, Khoo B, Rassem T (2016) Block-based discrete wavelet transform-singular value decomposition image watermarking scheme using human visual system characteristics. IET Image Proc 10(1):34–52. https://doi.org/10.1049/iet-ipr.2014.0965

    Article  Google Scholar 

  39. Malallah FL, Jafaar AA, Abbas NH, Saeed MG (2020) Reversible color video watermarking scheme based on hybrid of integer-to-integer wavelet transform and Arnold transform. Int J Electr Comput Eng 10(4):3519. https://doi.org/10.11591/ijece.v10i4.pp3519-3527

    Article  Google Scholar 

  40. Marini F, Walczak B (2015) Particle swarm optimization (PSO) A tutorial. Chemometr Intell Lab Syst 149:153–165. https://doi.org/10.1016/j.chemolab.2015.08.020

    Article  Google Scholar 

  41. Melendez-Melendez G, Cumplido R (2022) Reversible image authentication scheme with blind content reconstruction based on compressed sensing. Eng Sci Technol Int J. 34:101080. https://doi.org/10.1016/j.jestch.2021.101080

    Article  Google Scholar 

  42. Meng L, Liu L, Tian G et al (2021) An adaptive reversible watermarking in IWT domain. Multimed Tools Appl 80:711–735. https://doi.org/10.1007/s11042-020-09686-9

    Article  Google Scholar 

  43. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  44. Muhammad N, Bibi N, Mahmood Z, Akram T, Naqvi SR (2017) Reversible integer wavelet transform for blind image hiding method. PLoS One 12(5):e0176979. https://doi.org/10.1371/journal.pone.0176979

    Article  Google Scholar 

  45. Muhuri PK, Ashraf Z, Goel S (2020) A novel image steganographic method based on integer wavelet transformation and particle swarm optimization. Appl Soft Comput 92:106257. https://doi.org/10.1016/j.asoc.2020.106257

    Article  Google Scholar 

  46. Naskar R, Chakraborty RS (2011) Reversible Image Watermarking through Coordinate Logic Operation Based Prediction. In: Jajodia, S., Mazumdar, C. (eds) Information Systems Security. ICISS 2011. Lecture Notes in Computer Science, vol 7093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25560-1_13

  47. Nazari M, Maneshi A (2021) Chaotic reversible watermarking method based on IWT with tamper detection for transferring electronic health record. Secur Commun Netw 2021:1–15. https://doi.org/10.1155/2021/5514944

    Article  Google Scholar 

  48. Pakdaman Z, Nezamabadi-pour H, Saryazdi S (2021) A new reversible data hiding in transform domain. Multimed Tools Appl 80:8931–8955. https://doi.org/10.1007/s11042-020-10058-6

    Article  Google Scholar 

  49. Parah SA, Ahad F, Sheikh JA, Bhat GM (2017) Hiding clinical information in medical images: a new high capacity and reversible data hiding technique. J Biomed Inf 66:214–230. https://doi.org/10.1016/j.jbi.2017.01.006

    Article  Google Scholar 

  50. Parah SA, Sheikh JA, Akhoon JA, Loan NA (2020) Electronic Health Record hiding in Images for smart city applications: A computationally efficient and reversible information hiding technique for secure communication. Future Gener Comput Syst 108:935–949. https://doi.org/10.1016/j.future.2018.02.023

    Article  Google Scholar 

  51. Quinn D, Chen L, Mulvenna M (2012) Social network analysis: a survey. Int J Ambient Comput Intell (IJACI) 4(3):46–58. https://doi.org/10.4018/jaci.2012070104

    Article  Google Scholar 

  52. Sangeetha N, Anita X, Vijayarajan R (2021) Medical Image Watermarking: A Review on Wavelet-Based Methods. In: E. Priya, V. Rajinikanth (eds) Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, Springer, Singapore, pp 203–221. https://doi.org/10.1007/978-981-15-6141-2_11

  53. Sara U, Akter M, Uddin MS (2019) Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. J Comput Commun 7(3):8–18. https://doi.org/10.4236/jcc.2019.73002

    Article  Google Scholar 

  54. Sharma S, Saini H (2019) Efficient solution for load balancing in fog computing utilizing artificial bee colony. Int J Ambient Comput Intell (IJACI) 10(4):60–77. https://doi.org/10.4018/IJACI.2019100104

    Article  Google Scholar 

  55. Thakur S, Singh AK, Ghrera SP (2021) NSCT domain–based secure multiple-watermarking technique through lightweight encryption for medical images. Concurr Comput Pract Exper 33(2):e5108. https://doi.org/10.1002/cpe.5108

    Article  Google Scholar 

  56. Thanki, R., Borra, S., Dey, N., Ashour, A.S. (2018). Medical Imaging and Its Objective Quality Assessment: An Introduction. In: Dey, N., Ashour, A., Borra, S. (eds) Classification in BioApps. Lecture Notes in Computational Vision and Biomechanics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-65981-7_1

  57. Ustubioglu A, Ulutas G, Ustubioglu B (2019) IWT-MDE based reversible thermal image watermarking enhanced with secret sharing mechanism. Multimed Tools Appl 78:22269–22299. https://doi.org/10.1007/s11042-019-7529-0

    Article  Google Scholar 

  58. Wu X, Yang CN (2019) Invertible secret image sharing with steganography and authentication for AMBTC compressed images. Signal Process: Image Commu 78:437–447. https://doi.org/10.1016/j.image.2019.08.007

    Article  Google Scholar 

  59. Yuan Z, Su Q, Liu D, Zhang X, Yao T (2020) Fast and robust image watermarking method in the spatial domain. IET Image Proc 14(15):3829–3838. https://doi.org/10.1049/iet-ipr.2019.1740

    Article  Google Scholar 

  60. Zhang XP, Li K (2005) Comments on “An SVD-based watermarking scheme for protecting rightful Ownership.” IEEE Trans Multimed 7(3):593–594. https://doi.org/10.1109/TMM.2005.843357

    Article  Google Scholar 

  61. Zhang Z, Wu L, Gao S et al (2018) Robust Reversible Watermarking Algorithm Based on RIWT and Compressed Sensing. Arab J Sci Eng 43:979–992. https://doi.org/10.1007/s13369-017-2898-z

    Article  Google Scholar 

  62. Zhu T, Qu W, Cao W (2022) An optimized image watermarking algorithm based on SVD and IWT. J Supercomput 78:222–237. https://doi.org/10.1007/s11227-021-03886-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Lakshmi.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmi, H.R., Borra, S. Improved adaptive reversible watermarking in integer wavelet transform using moth-flame optimization. Multimed Tools Appl 83, 17183–17215 (2024). https://doi.org/10.1007/s11042-023-16203-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16203-1

Keywords

Navigation