Skip to main content
Log in

DeepCONN: patch-wise deep convolutional neural networks for the segmentation of multiple sclerosis brain lesions

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Segmentation is a critical process for examining Multiple Sclerosis (MS) brain lesions for diagnosis, follow-up, and prognosis of the disease. The complexity of the manual segmentation increases due to the variability in size, shape, location, intensity, and texture of lesions. It is also subjected to intra and inter-observer variability. It is, therefore desirable to develop an automatic segmentation pipeline that gives an accurate and reliable performance to diagnose the disease at an early stage. This paper presents a Patch-wise Deep Convolutional Neural Network (DeepCONN) to extract the brain lesions of Multiple Sclerosis (MS) from Magnetic Resonance Images (MRI). To enhance the reliability, the DeepCONN framework uses separate convolutional pathways for T1 and T2 sequences with different convolutional filters, and concatenated output is further passed through another set of convolutional filters to get the final resultant output. The performance of the DeepCONN framework is evaluated on medical image computing and computer-assisted intervention (MICCAI 2008 and 2016) challenges which yield less False Positive Rate (FPR) of 0.5% and a high True Positive Rate (TPR) of 74%. Also, the results show that DeepCONN outperforms other methods in terms of accuracy, i.e., 97%, which indicates a more accurate segmentation of MS brain lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm I
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Algorithm III
Algorithm IV
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The dataset used in the manuscript is taken from two sources: https://shanoir.irisa.fr/shanoir-ng/challenge-request and https://www.nitrc.org/projects/msseg/

References

  1. Available at: http://www.msif.org/about-ms/what-is-ms/ [Online], 30-Octobar-15

  2. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30:449–459

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292

    Article  Google Scholar 

  4. Anbeek P, Vincken KL, Viergever MA (2008) Automated MS-lesion segmentation by k-nearest neighbor classification. MIDAS Journal

  5. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42:1–13

    Article  Google Scholar 

  6. Aslani S, Dayan M, Storelli L, Filippi M, Murino V, Rocca MA, Sona D (2019) Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Neuroimage 196:1–15

    Article  PubMed  Google Scholar 

  7. Available at: https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063. Accessed 21 Mar 2018

  8. Bauer S, Nolte LP, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011: 14th International Conference, Toronto, Canada, September 18–22, 2011, Proceedings, Part III 14 (pp. 354–361). Springer Berlin Heidelberg

  9. Beaumont J, Commowick O, Barillot C (2016) Multiple Sclerosis lesion segmentation using an automated multimodal Graph Cut. In Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure–MICCAI-MSSEG (pp. 1–8)

  10. Bejnordi, B. E., Veta, M., Van Diest, P. J., Van Ginneken, B., Karssemeijer, N., Litjens, G., CAMELYON16 Consortium (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210

    Article  Google Scholar 

  11. Benali L, Notton G, Fouilloy A, Voyant C, Dizene R (2019) Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renewable Energy 132:871–884

    Article  Google Scholar 

  12. Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  PubMed  Google Scholar 

  13. Birenbaum A, Greenspan H (2017) Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell 65:111–118

    Article  Google Scholar 

  14. Boix X, Gonfaus JM, Van De Weijer J, Bagdanov AD, Serrat J, Gonzalez J (2012) Harmony potentials: Fusing global and local scale for semantic image segmentation. Int J Comput Vision 96(1):83–102

    Article  MathSciNet  Google Scholar 

  15. Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239

    Article  PubMed  Google Scholar 

  16. Carass A, Cuzzocreo J, Wheeler MB, Bazin PL, Resnick SM, Prince JL (2011) Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. Neuroimage 56(4):1982–1992

    Article  PubMed  Google Scholar 

  17. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, Chen CM (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 6(1):1–13

    Google Scholar 

  18. Christ PF, Elshaer MEA, Ettlinger F, Tatavarty S, Bickel M, Bilic P, Menze BH (2016) Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In International conference on medical image computing and computer-assisted intervention (pp. 415–423). Springer, Cham

  19. Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289

  20. Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL (2011) Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage 54(2):940–954

    Article  PubMed  Google Scholar 

  21. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255). Ieee

  22. Depeursinge A, Van de Ville D, Platon A, Geissbuhler A, Poletti PA, Muller H (2012) Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames. IEEE Trans Inf Technol Biomed 16(4):665–675

    Article  PubMed  Google Scholar 

  23. Deshpande H, Maurel P, Barillot C (2015) Adaptive dictionary learning for competitive classification of multiple sclerosis lesions. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (pp. 136–139). IEEE

  24. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The pascal visual object classes challenge: A retrospective. Int J Comput Vision 111:98–136

    Article  Google Scholar 

  26. Garcia-Lorenzo D, Prima S, Arnold DL, Collins DL, Barillot C (2011) Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. IEEE Trans Med Imaging 30(8):1455–1467

    Article  PubMed  PubMed Central  Google Scholar 

  27. Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N (2011) Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 57(2):378–390

    Article  PubMed  Google Scholar 

  28. Ghafoorian M, Karssemeijer N, Heskes T, van Uden IW, Sanchez CI, Litjens G, Platel B (2017) Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  29. Ghribi O, Njeh I, Hamida AB, Zouch W, Mhiri C (2014) Brief review of multiple sclerosis lesions segmentation methods on conventional magnetic resonance imaging. In 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (pp. 249–253). IEEE

  30. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315–323). JMLR Workshop and Conference Proceedings

  31. Guizard N, Coupé P, Fonov VS, Manjón JV, Arnold DL, Collins DL (2015) Rotation-invariant multi-contrast non-local means for MS lesion segmentation. NeuroImage Clinical 8:376–389

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22):2402–2410

    Article  PubMed  Google Scholar 

  33. Hao Z, Wang Q, Seong YK, Lee JH, Ren H, Kim JY (2012) Combining CRF and multi-hypothesis detection for accurate lesion segmentation in breast sonograms. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012: 15th International Conference, Nice, France, October 1–5, 2012, Proceedings, Part I 15 (pp. 504–511). Springer Berlin Heidelberg

  34. Harmouche R, Subbanna NK, Collins DL, Arnold DL, Arbel T (2014) Probabilistic multiple sclerosis lesion classification based on modeling regional intensity variability and local neighborhood information. IEEE Trans Biomed Eng 62(5):1281–1292

    Article  PubMed  Google Scholar 

  35. Hasegawa, A., Lo, S. C. B., Freedman, M. T., & Mun, S. K. (1994). Convolution neural-network-based detection of lung structures. In Medical Imaging 1994: Image Processing (Vol. 2167, pp. 654–662). SPIE

  36. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14 (pp. 630–645). Springer International Publishing

  37. Inglese M (2011) MRI measures of neuroprotection and repair in multiple sclerosis. J Neurol Sci 311:S16–S23

    Article  PubMed  Google Scholar 

  38. Jain S, Sima DM, Ribbens A, Cambron M, Maertens A, Van Hecke W, Smeets D (2015) Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. NeuroImage Clin 8:367–375

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jerman T, Galimzianova A, Pernuš F, Likar B, Špiclin Ž (2016) Combining unsupervised and supervised methods for lesion segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: First International Workshop, Brainles 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Revised Selected Papers 1 (pp. 45–56). Springer International Publishing

  40. Jesson A, Arbel T (2015) Hierarchical MRF and random forest segmentation of MS lesions and healthy tissues in brain MRI. Proceedings of the 2015 longitudinal multiple sclerosis lesion segmentation challenge, 1–2

  41. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  PubMed  Google Scholar 

  42. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

  43. Knight J, Khademi A (2016) MS lesion segmentation using FLAIR MRI only. Proceedings of the 1st MICCAI challenge on multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure-MICCAI-MSSEG, 21–28

  44. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  45. Kumar A, Murthy ON, Ghosal P, Mukherjee A, Nandi D (2019) A dense U-Net architecture for multiple sclerosis lesion segmentation. In TENCON 2019–2019 IEEE Region 10 Conference (TENCON) (pp. 662–667). IEEE

  46. Ladický LU, Russell C, Kohli P, Torr PH (2009) Associative hierarchical crfs for object class image segmentation. In 2009 IEEE 12th International Conference on Computer Vision (pp. 739–746). IEEE

  47. Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582

    Article  PubMed  Google Scholar 

  48. Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Davatzikos C (2008) Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol 15(3):300–313

    Article  PubMed  PubMed Central  Google Scholar 

  49. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  ADS  CAS  PubMed  Google Scholar 

  50. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  51. Lee CH, Schmidt M, Murtha A, Bistritz A, Sander J, Greiner R (2005) Segmenting brain tumors with conditional random fields and support vector machines. In Computer Vision for Biomedical Image Applications: First International Workshop, CVBIA 2005, Beijing, China, October 21, 2005. Proceedings 1 (pp. 469-478). Springer Berlin Heidelberg

  52. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Zitnick CL (2014) Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13 (pp. 740–755). Springer International Publishing

  53. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  54. Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs IH, de Kaa C, Bult P, Van Ginneken B, Van der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6:26286

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB (2018) Deep learning MR imaging–based attenuation correction for PET/MR imaging. Radiology 286(2):676–684

    Article  PubMed  Google Scholar 

  56. Lo SC, Lou SL, Lin JS, Freedman MT, Chien MV, Mun SK (1995) Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging 14(4):711–718

    Article  CAS  PubMed  Google Scholar 

  57. McClelland JL, Rumelhart DE, PDP Research Group (1986) Parallel distributed processing (Vol. 2, pp. 20–21). Cambridge, MA: MIT press

  58. McKinley R, Wepfer R, Gundersen T, Wagner F, Chan A, Wiest R, Reyes M (2016) Nabla-net: A deep dag-like convolutional architecture for biomedical image segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers 2 (pp. 119–128). Springer International Publishing

  59. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Van Leemput K (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Moeskops P, Wolterink JM, Van Der Velden BH, Gilhuijs KG, Leiner T, Viergever M A, Išgum I (2016) Deep learning for multi-task medical image segmentation in multiple modalities. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17–21, 2016, Proceedings, Part II 19 (pp. 478–486). Springer International Publishing

  62. Mordvintsev A, Olah C, Tyka M (2015) Inceptionism: Going deeper into neural networks. Available at: https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html. Accessed on 25 September, 2019

  63. Morra J, Tu Z, Toga A, Thompson P (2008) Automatic segmentation of MS lesions using a contextual model for the MICCAI grand challenge. Grand Challenge Work Mult Scler Lesion Segm Challenge, 1–7

  64. Mortazavi D, Kouzani AZ, Soltanian-Zadeh H (2012) Segmentation of multiple sclerosis lesions in MR images: a review. Neuroradiology 54:299–320

    Article  PubMed  Google Scholar 

  65. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807–814)

  66. Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Mori S (2009) Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage 46(2):486–499

    Article  PubMed  Google Scholar 

  67. Piao J, Chen Y, Shin H (2019) A new deep learning based multi-spectral image fusion method. Entropy 21(6):570

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: Overview, challenges and the future. Classification in BioApps: Automation of Decision Making, 323–350

  69. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18 (pp. 234–241). Springer International Publishing

  70. Roura E, Oliver A, Cabezas M, Valverde S, Pareto D, Vilanova JC, Lladó X (2015) A toolbox for multiple sclerosis lesion segmentation. Neuroradiology 57:1031–1043

    Article  PubMed  Google Scholar 

  71. Roy S, Butman JA, Reich DS, Calabresi PA, Pham DL (2018) Multiple sclerosis lesion segmentation from brain MRI via fully convolutional neural networks. arXiv preprint arXiv:1803.09172

  72. Roy S, He Q, Carass A, Jog A, Cuzzocreo JL, Reich DS, Pham D (2014) Example based lesion segmentation. In Medical Imaging 2014: Image Processing (Vol. 9034, pp. 503–510). SPIE

  73. Roy S, He Q, Sweeney E, Carass A, Reich DS, Prince JL, Pham DL (2015) Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation. IEEE J Biomed Health Inform 19(5):1598–1609

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

  75. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Fei-Fei L (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  76. Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  77. Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, Mühlau M (2012) An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59(4):3774–3783

    Article  PubMed  Google Scholar 

  78. Schmidt M, Murphy K, Fung G, Rosales R (2008) Structure learning in random fields for heart motion abnormality detection. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8). IEEE

  79. Shiee N, Bazin PL, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49(2):1524–1535

    Article  PubMed  Google Scholar 

  80. Simon JH, Li D, Traboulsee A, Coyle PK, Arnold DL, Barkhof F, Wolinsky JS (2006) Standardized MR imaging protocol for multiple sclerosis: Consortium of MS Centers consensus guidelines. Am J Neuroradiol 27(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  82. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E (2019) Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 290(3):590–606

    Article  PubMed  Google Scholar 

  83. Song Y, Cai W, Huh S, Chen M, Kanade T, Zhou Y, Feng D (2013) Discriminative data transform for image feature extraction and classification. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22–26, 2013, Proceedings, Part II 16 (pp. 452–459). Springer Berlin Heidelberg

  84. Song Y, Cai W, Wang Y, Feng DD (2012). Location classification of lung nodules with optimized graph construction. In 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) (pp. 1439–1442). IEEE

  85. Souplet JC, Lebrun C, Ayache N, Malandain G (2008) An automatic segmentation of T2-FLAIR multiple sclerosis lesions. In MICCAI-Multiple sclerosis lesion segmentation challenge workshop

  86. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  Google Scholar 

  87. Strumia M, Schmidt FR, Anastasopoulos C, Granziera C, Krueger G, Brox T (2016) White matter MS-lesion segmentation using a geometric brain model. IEEE Trans Med Imaging 35(7):1636–1646

    Article  PubMed  Google Scholar 

  88. Styner M, Lee J, Chin B, Chin M, Commowick O, Tran H, Warfield S (2008) 3D segmentation in the clinic: A grand challenge II: MS lesion segmentation. MIDAS Journal 2008:1–6

    Google Scholar 

  89. Sudre CH, Cardoso MJ, Bouvy WH, Biessels GJ, Barnes J, Ourselin S (2015) Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. IEEE Trans Med Imaging 34(10):2079–2102

    Article  PubMed  Google Scholar 

  90. Sujit SJ, Gabr RE, Coronado I, Robinson M, Datta S, Narayana PA (2018) Automated image quality evaluation of structural brain magnetic resonance images using deep convolutional neural networks. In 2018 9th Cairo International Biomedical Engineering Conference (CIBEC) (pp. 33–36). IEEE

  91. Sweeney EM, Shinohara RT, Shiee N, Mateen FJ, Chudgar AA, Cuzzocreo JL, Crainiceanu CM (2013) OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI. NeuroImage: Clin, 2, 402–413

  92. Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: A tutorial and survey. Proc IEEE 105(12):2295–2329

    Article  Google Scholar 

  93. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A (2015) Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9)

  94. Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15(1):1–28

    Article  Google Scholar 

  95. Tan WR, Chan CS, Aguirre HE, Tanaka K (2017) ArtGAN: Artwork synthesis with conditional categorical GANs. In 2017 IEEE International Conference on Image Processing (ICIP) (pp. 3760–3764). IEEE

  96. Tomas-Fernandez X, Warfield SK (2015) A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 34(6):1349–1361

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320

    Article  PubMed  PubMed Central  Google Scholar 

  98. Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, Lladó X (2017) Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage 155:159–168

    Article  PubMed  Google Scholar 

  99. Valverde S, Salem M, Cabezas M, Pareto D, Vilanova JC, Ramió-Torrentà L, Lladó X (2019) One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. NeuroImage Clin 21:101638

    Article  PubMed  Google Scholar 

  100. Vera-Olmos F, Melero H, Malpica N (2016) Random forest for multiple sclerosis lesion segmentation. Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAI-MSSEG, 81–86

  101. Wachinger C, Reuter M, Klein T (2018) DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. Neuroimage 170:434–445

    Article  PubMed  Google Scholar 

  102. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9:611–629

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yang Z (2017) An automatic and accurate method of full heart segmentation from CT image based on linear gradient model. Mod Phys Lett B 31(19–21):1740045

    Article  ADS  Google Scholar 

  104. Yasaka K, Akai H, Abe O, Kiryu S (2018) Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286(3):887–896

    Article  PubMed  Google Scholar 

  105. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part I 13 (pp. 818–833). Springer International Publishing

  106. Zhang F, Song Y, Cai W, Lee MZ, Zhou Y, Huang H, Feng DD (2013) Lung nodule classification with multilevel patch-based context analysis. IEEE Trans Biomed Eng 61(4):1155–1166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Kaur, L. & Singh, A. DeepCONN: patch-wise deep convolutional neural networks for the segmentation of multiple sclerosis brain lesions. Multimed Tools Appl 83, 24401–24433 (2024). https://doi.org/10.1007/s11042-023-16292-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16292-y

Keywords

Navigation