Skip to main content

Advertisement

Log in

A review of deep learning approaches in clinical and healthcare systems based on medical image analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Healthcare is a high-priority sector where people expect the highest levels of care and service, regardless of cost. That makes it distinct from other sectors. Due to the promising results of deep learning in other practical applications, many deep learning algorithms have been proposed for use in healthcare and to solve traditional artificial intelligence issues. The main objective of this study is to review and analyze current deep learning algorithms in healthcare systems. In addition, it highlights the contributions and limitations of recent research papers. It combines deep learning methods with the interpretability of human healthcare by providing insights into deep learning applications in healthcare solutions. It first provides an overview of several deep learning models and their most recent developments. It then briefly examines how these models are applied in several medical practices. Finally, it summarizes current trends and issues in the design and training of deep neural networks besides the future direction in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. Baker RE et al. (2021) “Infectious disease in an era of global change,” Nat Rev Microbiol, vol. 0123456789, https://doi.org/10.1038/s41579-021-00639-z

  2. Wang J, Zhu H, Wang SH, Zhang YD (2021) A review of deep learning on medical image analysis. Mob Networks Appl 26(1):351–380. https://doi.org/10.1007/s11036-020-01672-7

    Article  Google Scholar 

  3. Segato A, Marzullo A, Calimeri F, De Momi E (2020) Artificial intelligence for brain diseases: a systematic review. APL Bioeng 4(4). https://doi.org/10.1063/5.0011697

  4. Dev A, Sharma A, Agarwal SS (2021) Artificial intelligence and speech Technology https://doi.org/10.1201/9781003150664

  5. Lai Z, Deng H (2018) “Medical image classification based on deep features extracted by deep model and statistic feature fusion with multi-layer perceptron,” Comput Intell Neurosci, vol. 2018, https://doi.org/10.1155/2018/2061516

  6. Coan LJ et al (2023) Automatic detection of glaucoma via fundus imaging and artificial intelligence: a review. Surv Ophthalmol 68(1):17–41. https://doi.org/10.1016/j.survophthal.2022.08.005

    Article  Google Scholar 

  7. Hesamian MH, Jia W, He X, Kennedy P (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 32(4):582–596. https://doi.org/10.1007/s10278-019-00227-x

    Article  Google Scholar 

  8. Shamshirband S, Fathi M, Dehzangi A, Chronopoulos AT, Alinejad-Rokny H (2021) A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. J Biomed Inform 113(August 2020):103627. https://doi.org/10.1016/j.jbi.2020.103627

    Article  Google Scholar 

  9. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  Google Scholar 

  10. Ogrean V, Dorobantiu A, Remus B (2021) Deep learning architectures and techniques for multi-organ segmentation. Int J Adv Comput Sci Appl 12(1). https://doi.org/10.3791/1700

  11. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  12. Goebel R (2022) Series Editors. https://doi.org/10.5771/9783748924418-207

  13. Hatcher WG, Yu W (2018) A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends. IEEE Access 6(c):24411–24432. https://doi.org/10.1109/ACCESS.2018.2830661

    Article  Google Scholar 

  14. Lin CL, Wu KC (2023) Development of revised ResNet-50 for diabetic retinopathy detection. BMC Bioinf 24(1):157. https://doi.org/10.1186/s12859-023-05293-1

    Article  Google Scholar 

  15. Hassan E, Shams MY, Hikal NA, Elmougy S (2022) The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimed Tools Appl https://doi.org/10.1007/s11042-022-13820-0

  16. Squires M et al. (2023) “Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment,” Brain Inf, vol. 10, no. 1, https://doi.org/10.1186/s40708-023-00188-6

  17. Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116

    Article  Google Scholar 

  18. Mufti M, Kaiser M S, Mcginnity T M, Hussain A, “Deep Learning in Mining Biological Data,” Cognit. Comput., vol. 1, p. 3, https://doi.org/10.1007/s12559-020-09773-x.

  19. Coulibaly S, Kamsu-Foguem B, Kamissoko D, Traore D (2019) Deep neural networks with transfer learning in millet crop images. Comput Ind 108:115–120. https://doi.org/10.1016/j.compind.2019.02.003

    Article  Google Scholar 

  20. Korolev S, Safiullin A, Belyaev M, Dodonova Y (2017) “Residual and plain convolutional neural networks for 3D brain MRI Classification Sergey Korolev Amir Safiullin Mikhail Belyaev Skolkovo Institute of Science and Technology Institute for Information Transmission Problems,” 2017 IEEE 14th Int. Symp. Biomed. Imaging (ISBI 2017), pp. 835–838, https://doi.org/10.1109/ISBI.2017.7950647.

  21. Lei L, Yuan Y, Vu TX, Chatzinotas S, Ottersten B (2019) “Learning-Based Resource Allocation: Efficient Content Delivery Enabled by Convolutional Neural Network,” IEEE Work Signal Process Adv Wirel Commun SPAWC, vol. 2019, https://doi.org/10.1109/SPAWC.2019.8815447

  22. Helaly HA, Badawy M, Haikal AY (2021) “Deep learning approach for early detection of Alzheimer’s disease,” Cogn Comput, no. August 2020, https://doi.org/10.1007/s12559-021-09946-2

  23. Zhang YD et al (2018) Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping. Multimed Tools Appl 77(17):21825–21845. https://doi.org/10.1007/s11042-017-4383-9

    Article  Google Scholar 

  24. Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 42(5):85. https://doi.org/10.1007/s10916-018-0932-7

    Article  Google Scholar 

  25. Kuo CCJ (2016) Understanding convolutional neural networks with a mathematical model. J Vis Commun Image Represent 41:406–413. https://doi.org/10.1016/j.jvcir.2016.11.003

    Article  Google Scholar 

  26. Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW (2005) In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330(4):1299–1305. https://doi.org/10.1016/j.bbrc.2005.03.111

    Article  Google Scholar 

  27. Tu F, Yin S, Ouyang P, Tang S, Liu L, Wei S (2017) Deep Convolutional Neural Network Architecture with Reconfigurable Computation Patterns. IEEE Trans Very Large Scale Integr Syst 25(8):2220–2233. https://doi.org/10.1109/TVLSI.2017.2688340

    Article  Google Scholar 

  28. Singh AV (2015) “Content-Based Image Retrieval using Deep Learning,” no. July, https://doi.org/10.13140/RG.2.2.29510.16967.

  29. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Van Esesn BC, Awwal AA, Asari VK (2018) The history began from alexnet: a comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164. https://doi.org/10.48550/arXiv.1803.01164

  30. Khan HA, Jue W, Mushtaq M, Mushtaq MU (2020) Brain tumor classification in MRI image using convolutional neural network. Math Biosci Eng 17(5):6203–6216. https://doi.org/10.3934/MBE.2020328

    Article  MathSciNet  Google Scholar 

  31. Simonyan K, Zisserman A (2015) “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp 1–14. https://doi.org/10.48550/arXiv.1409.1556

  32. Targ S, Almeida D, Lyman K (2016) Resnet in resnet: generalizing residual architectures. pp 1–7. arXiv preprint. http://arxiv.org/abs/1603.08029

  33. Alzubaidi L et al. (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, https://doi.org/10.1186/s40537-021-00444-8

  34. Chen J, Zhou M, Zhang D, Huang H, Zhang F (2021) “Quantification of water inflow in rock tunnel faces via convolutional neural network approach,” Autom Constr, vol. 123, no. January, https://doi.org/10.1016/j.autcon.2020.103526

  35. G. Litjens et al., “A survey on deep learning in medical image analysis,” Med Image Anal, vol. 42, no. December 2012, pp. 60–88, 2017, https://doi.org/10.1016/j.media.2017.07.005.

  36. Zhou T, Canu S, Ruan S (2020) “A review: Deep learning for medical image segmentation using multi-modality fusion,” arXiv, vol. 4, no. July, https://doi.org/10.1016/j.array.2019.100004

  37. Liu X, Song L, Liu S, Zhang Y (2021) A review of deep-learning-based medical image segmentation methods. Sustain 13(3):1–29. https://doi.org/10.3390/su13031224

    Article  Google Scholar 

  38. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Proces Syst 27:1–9. https://doi.org/10.1002/14651858.CD013788.pub2

  39. An FP, Liu JE (2021) “Medical image segmentation algorithm based on multi-layer boundary perception-self attention deep learning model,” Multimed Tools Appl, pp. 15017–15039, https://doi.org/10.1007/s11042-021-10515-w

  40. Shirokikh B et al. (2021) “Accelerating 3d medical image segmentation by adaptive small-scale target localization,” J Imaging, vol. 7, no. 2, https://doi.org/10.3390/jimaging7020035

  41. Zhuang J, Yang J, Gu L, Dvornek N (2019) “Shelfnet for fast semantic segmentation,” Proc. - 2019 Int. Conf. Comput. Vis. Work. ICCVW 2019, pp. 847–856, https://doi.org/10.1109/ICCVW.2019.00113

  42. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848. https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  43. Chen LC, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587. https://doi.org/10.48550/arXiv.1706.05587

  44. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  45. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 9351:234–241. https://doi.org/10.1007/978-3-319-24574-4_28

    Article  Google Scholar 

  46. Ourselin S, Joskowicz L, Eds W. W, Hutchison D (2016) Medical Image Computing and Computer-Assisted Intervention – MICCAI’2016, vol. Proceeding. [Online]. Available: https://doi.org/10.1007/10704282

  47. Yamanakkanavar N, Choi JY, Lee B (2020) MRI segmentation and classification of human brain using deep learning for diagnosis of alzheimer’s disease: a survey. Sensors (Switzerland) 20(11):1–31. https://doi.org/10.3390/s20113243

    Article  Google Scholar 

  48. Liu X, Deng Z, Yang Y (2019) Recent progress in semantic image segmentation. Artif Intell Rev 52(2):1089–1106. https://doi.org/10.1007/s10462-018-9641-3

    Article  Google Scholar 

  49. Russakovsky O et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  50. Chung YW, Choi IY (2023) Detection of abnormal extraocular muscles in small datasets of computed tomography images using a three-dimensional variational autoencoder. Sci Rep 13(1):1–10. https://doi.org/10.1038/s41598-023-28082-5

    Article  MathSciNet  Google Scholar 

  51. Kabir S, Farrokhvar L, Dabouei A (2023) A weakly supervised approach for thoracic diseases detection. Expert Syst Appl 213, no. PB:118942. https://doi.org/10.1016/j.eswa.2022.118942

    Article  Google Scholar 

  52. Al Duhayyim M et al (2023) Sailfish Optimization with Deep Learning Based Oral Cancer Classification Model. Comput Syst Sci Eng 45(1):753–767. https://doi.org/10.32604/csse.2023.030556

    Article  Google Scholar 

  53. Umer MJ, Sharif M, Alhaisoni M, Tariq U, Kim YJ, Chang B (2023) A Framework of Deep Learning and Selection-Based Breast Cancer Detection from Histopathology Images. Comput Syst Sci Eng 45(2):1001–1016. https://doi.org/10.32604/csse.2023.030463

    Article  Google Scholar 

  54. Asiri AA et al (2023) Machine Learning-Based Models for Magnetic Resonance Imaging (MRI)-Based Brain Tumor Classification. Intell Autom Soft Comput 36(1):299–312. https://doi.org/10.32604/iasc.2023.032426

    Article  Google Scholar 

  55. Klingenberg M, Eitel F, Habes M, Ritter K (2022) Higher performance for women than men in MRI-based Alzheimer’s disease detection. Alzheimers Res Ther:1–13. https://doi.org/10.1186/s13195-023-01225-6

  56. Dolz J, Desrosiers C, Ben Ayed I (2018) 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study. Neuroimage 170:456–470. https://doi.org/10.1016/j.neuroimage.2017.04.039

    Article  Google Scholar 

  57. Allioui H, Sadgal M, Elfazziki A (2019) Deep MRI segmentation: A convolutional method applied to alzheimer disease detection. Int J Adv Comput Sci Appl 10(11):365–371. https://doi.org/10.14569/IJACSA.2019.0101151

    Article  Google Scholar 

  58. Sun J, Yan S, Song C, Han B (2020) Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer’s disease. Int J Comput Assist Radiol Surg 15(3):445–455. https://doi.org/10.1007/s11548-019-02106-w

    Article  Google Scholar 

  59. Chitradevi D, Prabha S, Prabhu AD (2020) “Diagnosis of Alzheimer disease in MR brain images using optimization techniques,” Neural Comput & Applic, vol. 7, https://doi.org/10.1007/s00521-020-04984-7

  60. Carmo D, Silva B, Yasuda C, Rittner L, Lotufo R (2021) Hippocampus segmentation on epilepsy and Alzheimer’s disease studies with multiple convolutional neural networks. Heliyon 7(2):e06226. https://doi.org/10.1016/j.heliyon.2021.e06226

    Article  Google Scholar 

  61. Nobakht S, Schaeffer M, Forkert ND, Nestor S, Black SE, Barber P (2021) “Combined atlas and convolutional neural network-based segmentation of the hippocampus from mri according to the adni harmonized protocol,” Sensors, vol. 21, no. 7, https://doi.org/10.3390/s21072427

  62. Helaly HA, Badawy M, Haikal AY (2021) “Toward deep MRI segmentation for Alzheimer’s disease detection,” Neural Comput & Applic, vol. 8, https://doi.org/10.1007/s00521-021-06430-8

  63. Dodia S, Annappa B, Mahesh PA (2022) Recent advancements in deep learning based lung cancer detection: a systematic review. Eng Appl Artif Intell 116(September):105490. https://doi.org/10.1016/j.engappai.2022.105490

    Article  Google Scholar 

  64. Zheng S et al (2023) Survival prediction for stage I-IIIA non-small cell lung cancer using deep learning. Radiother Oncol 180:109483. https://doi.org/10.1016/j.radonc.2023.109483

    Article  Google Scholar 

  65. Shao J et al. (2022) “Deep learning empowers lung Cancer screening based on Mobile low-dose computed tomography in resource-constrained sites,” Front Biosci - Landmark, vol. 27, no. 7, https://doi.org/10.31083/j.fbl2707212

  66. Jalali Y, Fateh M, Rezvani M, Abolghasemi V, Anisi MH (2021) ResBCDU-net: a deep learning framework for lung CT image segmentation. Sensors (Switzerland) 21(1):1–24. https://doi.org/10.3390/s21010268

    Article  Google Scholar 

  67. Mohammed KK, Hassanien AE, Afify HM (2021) A 3D image segmentation for lung cancer using v.net architecture based deep convolutional networks. J Med Eng Technol 45(5):337–343. https://doi.org/10.1080/03091902.2021.1905895

    Article  Google Scholar 

  68. Lei M, Li J, Li M, Zou L, Yu H (2021) An improved unet++ model for congestive heart failure diagnosis using short-term rr intervals. Diagnostics 11(3):1–14. https://doi.org/10.3390/diagnostics11030534

    Article  Google Scholar 

  69. Innat M, Hossain MF, Mader K, Kouzani AZ (2023) A convolutional attention mapping deep neural network for classification and localization of cardiomegaly on chest X-rays. Sci Rep 13(1):6247. https://doi.org/10.1038/s41598-023-32611-7

    Article  Google Scholar 

  70. Agarap AFM (2018) On breast cancer detection: An application of machine learning algorithms on the Wisconsin diagnostic dataset. ACM Int Conf Proceeding Ser 1:5–9. https://doi.org/10.1145/3184066.3184080

    Article  Google Scholar 

  71. Dar RA, Rasool M, Assad A (2022) Breast cancer detection using deep learning: datasets, methods, and challenges ahead. Comput Biol Med 149(August):106073. https://doi.org/10.1016/j.compbiomed.2022.106073

    Article  Google Scholar 

  72. Aljuaid H, Alturki N, Alsubaie N, Cavallaro L, Liotta A (2022) Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput Methods Prog Biomed 223:106951. https://doi.org/10.1016/j.cmpb.2022.106951

    Article  Google Scholar 

  73. Raaj RS (2023) Breast cancer detection and diagnosis using hybrid deep learning architecture. Biomed Signal Process Control 82(August 2022):104558. https://doi.org/10.1016/j.bspc.2022.104558

    Article  Google Scholar 

  74. Koh J, Yoon Y, Kim S, Han K, Kim EK (2022) Deep learning for the detection of breast cancers on chest computed tomography. Clin Breast Cancer 22(1):26–31. https://doi.org/10.1016/j.clbc.2021.04.015

    Article  Google Scholar 

  75. Tariq M, Iqbal S, Ayesha H, Abbas I, Ahmad KT, Niazi MFK (2021) Medical image based breast cancer diagnosis: state of the art and future directions. Expert Syst Appl 167:114095. https://doi.org/10.1016/j.eswa.2020.114095

    Article  Google Scholar 

  76. Almajalid R, Shan J, Du Y, Zhang M (2019) “Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation,” Proc. - 17th IEEE Int Conf Mach Learn Appl ICMLA 2018, pp. 1103–1108, https://doi.org/10.1109/ICMLA.2018.00179.

  77. Ghayvat H et al. (2022) “AI-enabled radiologist in the loop: novel AI-based framework to augment radiologist performance for COVID-19 chest CT medical image annotation and classification from pneumonia,” Neural Comput & Applic, vol. 1, https://doi.org/10.1007/s00521-022-07055-1

  78. Subramanian N, Elharrouss O, Al-Maadeed S, Chowdhury M (2022) A review of deep learning-based detection methods for COVID-19. Comput Biol Med 143:105233. https://doi.org/10.1016/j.compbiomed.2022.105233

    Article  Google Scholar 

  79. Aggarwal P, Mishra NK, Fatimah B, Singh P, Gupta A, Joshi SD (2022) COVID-19 image classification using deep learning: advances, challenges and opportunities. Elsevier Ltd, https://doi.org/10.1016/j.compbiomed.2022.105350.

  80. Walvekar S, Shinde S (2021) “Efficient medical image segmentation of COVID-19 Chest CT images based on deep learning techniques,” 2021 Int Conf Emerg Smart Comput Informatics, ESCI 2021, pp. 203–206, https://doi.org/10.1109/ESCI50559.2021.9397043

  81. Jain R, Singh S, Swami S, Kumar S (2021) Deep learning-based techniques to identify COVID-19 patients using medical image segmentation. In: Manocha AK, Jain S, Singh M, Paul S (eds) Computational intelligence in healthcare. Springer International Publishing, Cham, pp 327–342. https://doi.org/10.1007/978-3-030-68723-6_18

    Chapter  Google Scholar 

  82. Bhattacharyya A, Bhaik D, Kumar S, Thakur P, Sharma R, Pachori RB (2022) A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images. Biomed Signal Process Control 71, no. PB:103182. https://doi.org/10.1016/j.bspc.2021.103182

    Article  Google Scholar 

  83. Payan A, Montana G (2015) “Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks,” pp. 1–9, https://doi.org/10.1613/jair.301

  84. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) “What is the best multi-stage architecture for object recognition?,” Proc IEEE Int Conf Comput Vis, pp. 2146–2153, https://doi.org/10.1109/ICCV.2009.5459469

  85. Sarraf S, Tofighi G (2016) Classification of alzheimer’s disease structural MRI data by deep learning convolutional neural networks. arXiv preprint, pp 8–12.  http://arxiv.org/abs/1607.06583https://doi.org/10.1097/IAE.0000000000001460

  86. Hosseini-Asl E, Keynton R, El-Baz A (2016) Alzheimer's disease diagnostics by adaptation of 3D convolutional network. In: 2016 IEEE International Conference On Image Processing (ICIP), (vol. 502, pp 126–130). IEEE. https://doi.org/10.1109/TNNLS.2015.2479223

  87. Khvostikov A, Aderghal K, Krylov A (2018) “3D Inception-based CNN with sMRI and MD-DTI data fusion for Alzheimer’s Disease diagnostics,” no. July, https://doi.org/10.13140/RG.2.2.30737.28006.

  88. Kahramanli H (2012) A modified cuckoo optimization algorithm for engineering optimization. Int J Futur Comput Commun 1(2):199

    Article  Google Scholar 

  89. Sahumbaiev I, Popov A, Ramirez J, Gorriz JM, Ortiz A  (2018) 3D-CNN HadNet classification of MRI for Alzheimer’s Disease diagnosis. In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). IEEE, pp 1–4. https://doi.org/10.1109/NSSMIC.2018.8824317

  90. Spasov SE et al. (2018) A Multimodal Convolutional Neural Network Framework for the Prediction of Alzheimer ’ s Disease, pp 1271–1274. https://doi.org/10.1109/EMBC.2018.8512468

  91. Wang Y, Yang Y, Guo X, Ye C, Gao N, Fang Y, Ma HT (2018) A novel multimodal MRI analysis for Alzheimer's disease based on convolutional neural network. In: 2018 40th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC). IEEE, pp 754–757. https://doi.org/10.1109/EMBC.2018.8512372

  92. Ge C, Qu Q (2019) Multiscale deep convolutional networks for characterization and detection of alzheimer ’ s disease using mr images Dept. of Electrical Engineering, Chalmers University of Technology, Sweden Inst. of Neuroscience and Physiology, Sahlgrenska Academy. IEEE Int Conf Image Process, pp 789–793. https://doi.org/10.1109/ICIP.2019.8803731

  93. Song T et al (2019) Graph convolutional neural networks for alzheimer ’ s disease. In: 2019 IEEE 16th Int Symp Biomed Imaging (ISBI 2019), no. Isbi, pp 414–417. https://doi.org/10.1109/ISBI.2019.8759531

  94. Liu L, Zhao S, Chen H, Wang A (2020) A new machine learning method for identifying Alzheimer’s disease. Simul Model Pract Theory 99:102023. https://doi.org/10.1016/j.simpat.2019.102023

    Article  Google Scholar 

  95. Khagi B, Lee B, Pyun JY, Kwon GR (2019) CNN Models performance analysis on MRI images of OASIS dataset for distinction between healthy and alzheimer's patient. In: 2019 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, pp 1–4. https://doi.org/10.23919/ELINFOCOM.2019.8706339

  96. Jain R, Jain N, Aggarwal A, Hemanth DJ (2019) ScienceDirect convolutional neural network based Alzheimer ’ s disease classification from magnetic resonance brain images. Cogn Syst Res 57:147–159. https://doi.org/10.1016/j.cogsys.2018.12.015

    Article  Google Scholar 

  97. Liu M et al (2018) A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 208(August):2020. https://doi.org/10.1016/j.neuroimage.2019.116459

    Article  Google Scholar 

  98. Impedovo D, Pirlo G, Vessio G, Angelillo MT (2019) A handwriting-based protocol for assessing neurodegenerative dementia. Cogn Comput 11(4):576–586. https://doi.org/10.1007/s12559-019-09642-2

    Article  Google Scholar 

  99. Parmar H, Nutter B, Long R, Antani S, Mitra S (2020) Spatiotemporal feature extraction and classification of Alzheimer’s disease using deep learning 3D-CNN for fMRI data. J Med Imaging 7(05):1–14. https://doi.org/10.1117/1.jmi.7.5.056001

    Article  Google Scholar 

  100. Basaia S et al (2019) Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin 21(December 2018):101645. https://doi.org/10.1016/j.nicl.2018.101645

    Article  Google Scholar 

  101. Pan D, Zeng A, Jia L, Huang Y, Frizzell T, Song X (2020) Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning. Front Neurosci 14(May):1–19. https://doi.org/10.3389/fnins.2020.00259

    Article  Google Scholar 

  102. Vassanelli S, Kaiser MS, Eds NZ, Goebel R (2020) Series Editors https://doi.org/10.1007/978-3-030-59277-6

  103. Gumma LN, Thiruvengatanadhan R, Kurakula L, Sivaprakasam T (2022) A survey on convolutional neural network (deep-learning technique) -based lung Cancer detection. SN Comput Sci 3(1):1–7. https://doi.org/10.1007/s42979-021-00887-z

    Article  Google Scholar 

  104. She Y et al (2022) Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: a multicentre study. eBioMedicine 86:104364. https://doi.org/10.1016/j.ebiom.2022.104364

    Article  Google Scholar 

  105. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33. https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  106. Guo Z, Xu L, Si Y, Razmjooy N (2021) Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics. Int J Imaging Syst Technol 31(4):1954–1969. https://doi.org/10.1002/ima.22608

    Article  Google Scholar 

  107. Su Y, Li D, Chen X (2021) “Lung nodule detection based on faster R-CNN framework,” Comput Methods Prog Biomed, vol. 200, p. 105866, https://doi.org/10.1016/j.cmpb.2020.105866

  108. Eltrass AS, Tayel MB, Ammar AI (2021) A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform. Biomed Signal Process Control 65(November 2020):102326. https://doi.org/10.1016/j.bspc.2020.102326

    Article  Google Scholar 

  109. Balcha AA, Woldie SA (2023) “Impact of genetic algorithm for the diagnosis of breast Cancer: Literature Review,” no. January, https://doi.org/10.4236/aid.2023.131005

  110. Zheng J, Lin D, Gao Z, Wang S, He M, Fan J (2020) Deep learning assisted efficient AdaBoost algorithm for breast Cancer detection and early diagnosis. IEEE Access 8:96946–96954. https://doi.org/10.1109/ACCESS.2020.2993536

    Article  Google Scholar 

  111. Ismail NS, Sovuthy C (2019) “Breast Cancer Detection Based on Deep Learning Technique,” 2019 Int Unimas Stem 12th Eng Conf EnCon 2019 - Proc, pp. 89–92, https://doi.org/10.1109/EnCon.2019.8861256

  112. Gouda W, Almurafeh M, Humayun M, Jhanjhi NZ (2022) Detection of COVID-19 based on chest X-rays using deep learning. Healthc 10(2):1–19. https://doi.org/10.3390/healthcare10020343

    Article  Google Scholar 

  113. Chakraborty S, Murali B, Mitra AK (2022) “An efficient deep learning model to detect COVID-19 using chest X-ray images,” Int J Environ Res Public Health, vol. 19, no. 4, https://doi.org/10.3390/ijerph19042013

  114. Pawar U, O’Shea D, Rea S, O’Reilly R (2020) “Explainable AI in Healthcare,” 2020 Int. Conf. Cyber Situational Awareness, Data Anal. Assessment, Cyber SA 2020, no. July https://doi.org/10.1109/CyberSA49311.2020.9139655

  115. Xiao X, Yan M, Basodi S, Ji C, Pan Y (2020) Efficient hyperparameter optimization in deep learning using a variable length genetic algorithm. arXiv preprint arXiv:2006.12703. http://arxiv.org/abs/2006.12703

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadeer A. Helaly.

Ethics declarations

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

This article contains no studies with human participants or animals performed by authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helaly, H.A., Badawy, M. & Haikal, A.Y. A review of deep learning approaches in clinical and healthcare systems based on medical image analysis. Multimed Tools Appl 83, 36039–36080 (2024). https://doi.org/10.1007/s11042-023-16605-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16605-1

Keywords

Navigation