Skip to main content
Log in

A transferability-aware covariance alignment network for image steganalysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image steganalysis seeks to detect whether the secret information is hidden in images. Recently, to alleviate the distribution discrepancy between the training and test data, domain adaptation-based image steganalysis approaches have attracted much attention. However, existing methods ignore the evaluation of the transferability between datasets and inevitably lead to negative transfer. In this paper, we propose a Transferability-Aware Covariance Alignment Network (TA-CAN) for image steganalysis. This new solution consists of two key strategies: the transferable-aware module (TAM) and the covariance alignment loss (CAL). In TAM, we introduce a texture estimator and design a match query strategy based on texture pools, determining whether data sets can be transferred from one to another. Furthermore, to reduce the discrepancies between datasets with transferability, we leverage CAL to align second-order statistics in different domains. Extensive experiments demonstrate that our proposed algorithm can effectively handle distributional differences between training and test sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur 7(3):868–882. https://doi.org/10.1109/TIFS.2012.2190402

    Article  Google Scholar 

  2. Denemark, T, Sedighi, V, Holub, V, Cogranne, R, Fridrich, J (2014) Selection-channel-aware rich model for steganalysis of digital images. In: Proc. IEEE Int. Workshop Inf. Forensics Secur, pp 48–53. https://doi.org/10.1109/WIFS.2014.7084302

  3. Holub V, Fridrich J (2013) Random projections of residuals for digital image steganalysis. IEEE Trans. Inf. Forensics Secur 8(12):1996–2006. https://doi.org/10.1109/TIFS.2013.2286682

    Article  Google Scholar 

  4. Wu, S, Zhong, S, Liu, Y (2018) Deep residual learning for image steganalysis. Multimed Tools Appl 77:10437–10453. https://doi.org/10.1007/s11042-017-4440-4

  5. Xu G, Wu H-Z, Shi Y-Q (2016) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712. https://doi.org/10.1109/LSP.2016.2548421

    Article  ADS  Google Scholar 

  6. Yedroudj, M, Comby, F, Chaumont, M (2018) Yedroudj-net: An efficient cnn for spatial steganalysis. In: Proc. IEEE Int Conf Acoust, Speech Signal Process, pp 2092–2096. https://doi.org/10.1109/ICASSP.2018.8461438

  7. Boroumand M, Chen M, Fridrich J (2019) Deep residual network for steganalysis of digital images. IEEE Trans Inf Forensics Secur 14(5):1181–1193. https://doi.org/10.1109/TIFS.2018.2871749

    Article  Google Scholar 

  8. Zhang R, Zhu F, Liu J, Liu G (2020) Depth-wise separable convolutions and multi-level pooling for an efficient spatial cnn-based steganalysis. IEEE Trans Inf Forensics Secur 15:1138–1150. https://doi.org/10.1109/TIFS.2019.2936913

    Article  Google Scholar 

  9. Luo, G, Wei, P, Zhu, S, Zhang, X, Qian, Z, Li, S (2022) Image steganalysis with convolutional vision transformer. In: Proc. IEEE Int. Conf. Acoust, Speech Signal Process, pp 3089–3093. https://doi.org/10.1109/ICASSP43922.2022.9747091

  10. Li Q, Feng G, Ren Y, Zhang X (2021) Embedding probability guided network for image steganalysis. IEEE Signal Process Lett 28:1095–1099. https://doi.org/10.1109/LSP.2021.3083546

    Article  ADS  Google Scholar 

  11. Weng S, Chen M, Yu L, Sun S (2022) Lightweight and effective deep image steganalysis network. IEEE Signal Process Lett 29:1888–1892. https://doi.org/10.1109/LSP.2022.3201727

    Article  ADS  Google Scholar 

  12. Fu T, Chen L, Fu Z, Yu K, Wang Y (2022) Ccnet: Cnn model with channel attention and convolutional pooling mechanism for spatial image steganalysis. J Vis Commun Image Represent 88:103633. https://doi.org/10.1016/j.jvcir.2022.103633

    Article  Google Scholar 

  13. Deng, X, Chen, B, Luo, W, Luo, D (2019) Fast and effective global covariance pooling network for image steganalysis. In: Proceedings of the ACM workshop on information hiding and multimedia security, pp 230–234. https://doi.org/10.1145/3335203.3335739

  14. You W, Zhang H, Zhao X (2021) A siamese cnn for image steganalysis. IEEE Trans Inf Forensics Secur 16:291–306. https://doi.org/10.1109/TIFS.2020.3013204

    Article  Google Scholar 

  15. Tsang CF, Fridrich J (2018) Steganalyzing images of arbitrary size with cnns. Electron Imag 7:121–1. https://doi.org/10.2352/ISSN.2470-1173.2018.07.MWSF-121

  16. Zhang, X, Kong, X, Wang, P, Wang, B (2019) Cover-source mismatch in deep spatial steganalysis. In: Proc. Int. Workshop Digit. Watermarking, pp 71–83. https://doi.org/10.1007/978-3-030-43575-2_6

  17. Zhang L, Abdullahi SM, He P, Wang H (2022) Dataset mismatched steganalysis using subdomain adaptation with guiding feature. Telecommun Syst 80(2):263–276. https://doi.org/10.1007/s11235-022-00901-6

    Article  Google Scholar 

  18. Holub, V, Fridrich, J (2012) Designing steganographic distortion using directional filters. In: Proc. IEEE Int. Workshop Inf. Forensics Secur, pp 234–239. https://doi.org/10.1109/WIFS.2012.6412655

  19. Li, B, Wang, M, Huang, J, Li, X (2014) A new cost function for spatial image steganography. In: Proc. IEEE Int. Conf. Inf. Process, pp 4206–4210. https://doi.org/10.1109/ICIP.2014.7025854

  20. Pevny, T, Filler, T, Bas, P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: Proc. Int. Workshop Inf. Hiding, pp 161–177

  21. Bas, P, Filler, T, Pevny, T (2011) break our steganographic system: the ins and outs of organizing boss. In: Proc. Int. Workshop Digit. Watermarking, pp 59–70. https://doi.org/10.1007/978-3-642-24178-9_5

  22. Fridrich, J, Pevny, T,Kodovsky, J (2007) Statistically undetectable jpeg steganography: dead ends challenges, and opportunities. In: Proceedings of the 9th Workshop on Multimedia & Security, pp 3–14. https://doi.org/10.1145/1288869.1288872

  23. Guo L, Ni J, Su W, Tang C, Shi Y-Q (2015) Using statistical image model for jpeg steganography: Uniform embedding revisited. IEEE Trans Inf Forensics Secur 10(12):2669–2680. https://doi.org/10.1109/TIFS.2015.2473815

    Article  Google Scholar 

  24. Lu, S-P, Wang, R, Zhong, T, Rosin, PL (2021) Large-capacity image steganography based on invertible neural networks. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit, pp 10811–10820. https://doi.org/10.1109/CVPR46437.2021.01067

  25. Xu, Y, Mou, C, Hu, Y, Xie, J, Zhang, J (2022) Robust invertible image steganography. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit, pp 7865–7874. https://doi.org/10.1109/CVPR52688.2022.00772

  26. Chen, H, Han, Q, Li, Q, Tong, X (2022) Image steganalysis with multi-scale residual network. Multimed Tools Appl, pp 1–23. https://doi.org/10.1007/s11042-021-11611-7

  27. You W, Zhao X, Ma S, Liu Y (2019) Restegnet: a residual steganalytic network. Multimed Tools Appl 78:22711–22725. https://doi.org/10.1007/s11042-019-7601-9

    Article  Google Scholar 

  28. Jia J, Zhai L, Ren W, Wang L, Ren Y, Zhang L (2020) Transferable heterogeneous feature subspace learning for jpeg mismatched steganalysis. Pattern Recognit 100:107105. https://doi.org/10.1016/j.patcog.2019.107105

    Article  Google Scholar 

  29. Feng, C, Kong, X, Li, M, Yang, Y, Guo, Y (2017) Contribution-based feature transfer for jpeg mismatched steganalysis. In: Proc. IEEE Int. Conf. Inf. Process, pp 500–504. https://doi.org/10.1109/ICIP.2017.8296331

  30. Ye J, Ni J, Yi Y (2017) Deep learning hierarchical representations for image steganalysis. IEEE Trans Inf Forensics Secur 12(11):2545–2557. https://doi.org/10.1109/TIFS.2017.2710946

    Article  Google Scholar 

  31. Haralick, RM, Shanmugam, K, Dinstein, I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3(6):610–621. https://doi.org/10.1109/TSMC.1973.4309314

  32. Sun, B, Saenko, K (2016) Deep coral: Correlation alignment for deep domain adaptation. In: Proc. Eur. Conf. Comput. Vis, pp 443–450. https://doi.org/10.1007/978-3-319-49409-8_35

  33. Huiskes, MJ, Lew, MS (2008) The mir flickr retrieval evaluation. In: Proc. ACM Int. Conf. Multimedia Inf. Retrieval. https://doi.org/10.1145/1460096.1460104

  34. Cimpoi, M, Maji, S, Kokkinos, I, Mohamed, S, Vedaldi, A (2014) Describing textures in the wild. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit, pp 3606–3613. https://doi.org/10.1109/CVPR.2014.461

  35. Holub, V, Fridrich, J (2013) Digital image steganography using universal distortion. In: Proceedings of the First ACM workshop on information hiding and multimedia security, pp 59–68. https://doi.org/10.1145/2482513.2482514

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lu, SP. & Yang, Y. A transferability-aware covariance alignment network for image steganalysis. Multimed Tools Appl 83, 33999–34013 (2024). https://doi.org/10.1007/s11042-023-16901-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16901-w

Keywords

Navigation